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SUMMARY

The morphogenesis of branched organs remains a
subject of abiding interest. Although much is known
about the underlying signaling pathways, it remains
unclear how macroscopic features of branched
organs, including their size, network topology, and
spatial patterning, are encoded. Here, we show
that, in mouse mammary gland, kidney, and
human prostate, these features can be explained
quantitatively within a single unifying framework of
branching and annihilating random walks. Based
on quantitative analyses of large-scale organ recon-
structions and proliferation kinetics measurements,
we propose that morphogenesis follows from the
proliferative activity of equipotent tips that stochas-
tically branch and randomly explore their environ-
ment but compete neutrally for space, becoming
proliferatively inactive when in proximity with neigh-
boring ducts. These results show that complex
branched epithelial structures develop as a self-
organized process, reliant upon a strikingly simple
but generic rule, without recourse to a rigid and
deterministic sequence of genetically programmed
events.
INTRODUCTION

Branching morphogenesis has fascinated biologists and mathe-

maticians for centuries, both because of its complexity and ubiq-

uity (Hogan 1999; Lu and Werb, 2008; Metzger et al., 2008). In

higher organisms, many organs are organized into ductal tree-

like structures comprising tens of thousands of branches, which

typically function to maximize the surface of exchange between

the epithelium and its lumen. Examples include lung, kidney,

prostate, liver, pancreas, the circulatory system and the mam-

mary gland epithelium. Alongside metazoa, tree crowns and
242 Cell 171, 242–255, September 21, 2017 ª 2017 The Author(s). Pu
This is an open access article under the CC BY license (http://creative
root systems as well as coral reefs often display a similar

branched organization (Harrison, 2010) raising the question of

whether common mechanisms could underlie their formation.

Extensive investigations have identified features shared by all

branched organs, which are formed by repeated cycles of

branching (either through side-branching or tip-splitting), together

with phases of ductal elongation (Iber and Menshykau, 2013).

Attempts to resolve the regulatory basis of branching morpho-

genesis have been targeted at different length scales, offering

contrasting perspectives. First, at the molecular scale, key regu-

latory signaling pathways, for instance controlling proliferation

and cell fate, have been resolved in multiple organs (Iber and

Menshykau, 2013). Second, at the cellular and mesoscopic

scale, measurements of gene expression patterns and branch-

ing shape have implicated Turing-like mechanisms in the regula-

tion of the first rounds of repetitive branching in the lung and

kidney (Iber andMenshykau, 2013; Guo et al., 2014). Alternative,

potentially overlapping, explanations based on mechanical

(Gjorevski and Nelson, 2011) or viscous (Lubkin and Murray,

1995) models have been proposed, and processes such as

oriented cell divisions (Yu et al., 2009), collective cell migration

(Huebner et al., 2016; Riccio et al., 2016), and cytoskeleton-

driven cell shape changes (Elliott et al., 2015; Kim et al., 2015)

have been shown to play a role. Yet, even a perfect understand-

ing of how single branching events occur would not explain how

thousands of tips and branches become coordinated at the or-

gan scale, to specify a complex ductal network.

Therefore, here, we adopt an alternative ‘‘non-reductionist’’

approach and test whether the statistical properties of branched

networks can be predicted without extensively addressing the

detailed underlying molecular and cellular regulatory processes.

Historically, the development of such statistical approaches has

been limited by the lack of high resolution biological data on the

complete organ structure. However, this problem is becoming

alleviated by advances in imaging techniques (Metzger et al.,

2008; Sampogna et al., 2015; Short et al., 2014), which provide

an ideal platform to question how a complex 3D organ structure

is encoded. Does it form from the unfolding of an intrinsic deter-

ministic program or is it shaped by extrinsic influences and sto-

chastic processes?
blished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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In the following, we use detailed whole-organ imaging and 3D

reconstructions of the mousemammary gland epithelium, mouse

kidney, and human prostate to address the spatiotemporal dy-

namics of branching morphogenesis. We show that the detailed

statistical properties of these organs share key underlying fea-

tures, which canbe explained quantitatively through a remarkably

simple and conserved design principle, based on the theory of

branching and annihilating randomwalks (BARWs). In this model,

growing ductal tips follow the same, time-invariant, statistical

rules based on stochastic ductal branching and random explora-

tion of space. However, when an active tip comes into proximity

with a neighboring duct, it becomes irreversibly inactive (differen-

tiating and exiting cell cycle), leading to the termination of the

duct. We show that, together, these simple local rules are enough

to allow the epithelium to grow in a self-organized manner, into

a complex ductal network with conserved statistical properties

that are quantitatively predicted by the model. Notably, these

isotropic rules predict the emergence of directional bias in the

expansion of the ductal network, in the absence of any external

guiding signaling gradients. Finally, to further challenge the

model, we predict, and discover experimentally, novel signatures

of the inferred dynamics, which are consistent with an out-of-

equilibrium ‘‘phase transition.’’ Moreover, by adjusting experi-

mentally themicroenvironment of the branching tips through local

or systemic perturbations, we further test the predictive capacity

of the model and gain insight into the molecular regulatory basis

of the inferred collective cell dynamics.

RESULTS

Defining the Ductal Network Structure of the Mouse
Mammary Gland Epithelium
To develop a model of tip-driven ductal morphogenesis, we

began by considering the mammary gland epithelium. At birth,

the mouse mammary gland is specified as a small rudimentary

tree-like structure (Figure S1A). During puberty, precursors local-

ized at ductal tips (termed terminal end-buds) drive the expan-

sion of a complex network throughmultiple rounds of tip bifurca-

tion and ductal elongation (Sternlicht, 2006) (Figure S1A). These

networks are characterized by the structural heterogeneity of

their subtrees (that we defined formally as the parts of the

ductal tree sharing a common branch ancestor at branch level

le = 6—that reflects the approximate extent of the rudimentary

structure prior to pubertal morphogenesis). Indeed, some ductal

subtrees become extremely large, containing as many as 30

generations of consecutive branching events, while neighboring

subtrees may terminate precipitously (Scheele et al., 2017).

Recently, we showed through quantitative genetic lineage

tracing methods that the complexity of the mammary epithelium

does not derive from intrinsic heterogeneity of tip precursor pop-

ulations, but from the stochastic fate decisions of equipotent

tips, which either branch (bifurcate) or terminate (through cell-cy-

cle exit) with near equal-probability (Scheele et al., 2017), sug-

gestive of a local control of tip fate. However, such a focus on

spatially averaged models of branching morphogenesis (Zubkov

et al., 2015) cannot resolve the spatiotemporal dynamics and

mechanistic basis of the underlying regulatory program, nor its

potential conservation in other organs.
How can such a balance between tip termination and branch-

ing be regulated at the population level? One possibility is that

tip branching and termination rates are dependent on the local

epithelial density. Indeed, an increase in the termination rate

and/or a decrease in the branching rate with local density can

ensure that the system reaches a robust steady state, character-

ized by a balance between tip branching and termination (Method

Details). Interestingly, such behavior generically produces glands

of uniform spatial density, a feature that we verified experimen-

tally by reconstructions of whole adult mammary glands (n = 14

glands, Figures 1A and 1B). However, to understand whether it

is branching or termination events that are actively regulated,

we turned to quantitative measurements. In particular, parame-

terization of the distribution of mammary branch lengths (defined

as the distance between consecutive branching points) revealed

a strikingly exponential dependence, with an average branch

length that remains approximately constant over time (Scheele

et al., 2017). This observation suggests that the timing between

consecutive branching events is random and statistically uncor-

related, pointing to a stochastic and time-invariant program

of tip branching. This behavior stands in stark contrast with the

early stages of lung morphogenesis, where branch lengths for a

given branching level are tightly controlled (Iber and Menshykau,

2013).

We then examined the spatial organization of the ductal

network. As the mammary fat pad constrains growth to a thin

pancake-like geometry, ductal morphogenesis of the mammary

epithelium takes place in a near 2D setting. Against this back-

ground, inspection of whole gland reconstructions revealed a

strikingly low frequency of ductal crossovers (Figures 1A, 1C,

1D, andS1) with terminated tips often residing close to an existing

duct or the fat pad boundary (Silberstein, 2001). This observation

suggests that ductal elongation and branching may proceed as

a ‘‘default state,’’ with tip termination occurring only when tips

come into proximity with existing ducts. Such behavior is consis-

tent with in vitromeasurements (Nelson et al., 2006), which show

that ductal branching only occurs when remote from the other

ducts, with tips close to neighbors remaining inactive.

Mammary Morphogenesis Proceeds as a Branching and
Annihilating Random Walk
Interestingly, such a model of branching morphogenesis maps

directly onto the theory of ‘‘branching and annihilating random

walks,’’ a class of models studied extensively by physicists

(Cardy and Täuber, 1996) showing that the dynamics of binary

tip-splitting models converge over time onto a common statisti-

cal behavior belonging to the universality class of ‘‘directed

percolation.’’ Here, we implemented a minimal model of branch-

ing morphogenesis, inspired by the theory of BARWs, where tip

dynamics involves only three processes (depicted in Figure 2A):

(1) ducts elongate from active tips in a random direction with

a speed v—‘‘a persistent random walk’’—leaving behind a trail

of static, non-proliferative ducts; (2) at any instant, ducts can

branch through stochastic tip bifurcation with a constant proba-

bility rb; and (3) ducts terminate through tip inactivation when tips

come within an annihilation radius Ra of an existing duct.

Significantly, numerical simulations of the model dynamics in

the absence of physical boundary constraints shows that the
Cell 171, 242–255, September 21, 2017 243
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Figure 1. Geometry and Characteristics of Murine Mammary Glands Revealed by Quantitative Reconstructions

(A) Quantitative reconstruction (top) and outline (bottom) of a fourth mammary gland based on Keratin14 (K14) staining (white), reproduced from (Scheele et al.,

2017) along with measurements of the fat pad dimensions Lx and Lz (red).

(B) Density profile of ducts along the rescaled antero-posterior axis.

(C) Counting of ductal crossovers (normalized by total number of ductal branches) reveal a low crossing probability.

(D) Experimentally measured ratio between the dimensions of the mammary fat pad (long axis Lx and short axis Lz) and the average length of a branch ld, used for

the simulations of the mammary gland. Error bars represent mean and SEM. Scale bar, 5 mm.

See also Figure S1.
system reaches robustly a non-equilibrium steady state in which

the frequency of branching and termination events becomes

naturally balanced (Figures S2A and S2B; Method Details). As

tips are not observed to cross the boundary of the fat pad and

frequently terminate in their proximity (Figure 1A), we further im-

plemented simulations of branching morphogenesis in a rectan-

gular box of length Lx andwidth Lz tomimic these geometric con-

straints. Thus, the only key parameter of the model is the ratio

between the dimensions of the fat pad and the average branch

length ld (the latter fixed by the ratio v/rb) (Figure 1D). Indeed,

this geometrical parameter was fitted to its measured value (Fig-

ure S2; Method Details), so all subsequent comparisons with

experiment represent the result of model predictions that do

not involve the adjustment of any free parameter.

While a visual inspection of a typical simulation output re-

vealed good qualitative agreement between the experiment

and the theoretical predictions of the spatial organization

(Figure 2B) and topology (Figure 2C) of the mammary ductal

network, can such a simple model dynamics also provide

quantitative insights? To address this question, we first quan-

tified how the predicted frequency of tip bifurcation versus

termination events evolves with branch level (i.e., the number

of generations since the origin). Interestingly, as well as reca-

pitulating long-term balance in the frequency of tip bifurcation

and termination, we found that the model faithfully reproduced

the dynamics of convergence toward balance, from an initial

stage of symmetric branching early in pubertal development,
244 Cell 171, 242–255, September 21, 2017
where the ductal density is low (Figure 2D, R2 = 0.73). Strik-

ingly, the model also predicted with high precision the hetero-

geneity of subtrees in mammary glands (defined in Figure 2C),

quantified both by the subtree size distribution (Figure 2E,

R2 = 0.96) and the subtree persistence to a given level (Fig-

ure 2F, R2 = 0.99).

Importantly, the spatial model accounted more accurately

for the abundance of very large subtrees, which appear due

to spatial ‘‘priming’’ in low density regions, than the previously

published ‘‘zero-dimensional’’ model (Scheele et al., 2017) in

which tip branching and termination events are defined intrin-

sically and probabilistically. More generally, to explore the

specificity of the model, we also considered the quantitative

predictions made by eight further classes of models, corre-

sponding to various alternative proposals from the literature.

In each case, their applicability to the experimental data

was found to be limited (see Figures S3 and S4A–S4D;

Method Details).

Branching and Annihilating Random Walks Reproduce
the Dynamics of Mammary Morphogenesis
Having established how the final state of the mammary epithe-

lium is specified, we turned to examine whether the full dynamics

of growth could also be predicted quantitatively. To gain insight

into the nature and parametric dependences of the growth

dynamics, we considered the hydrodynamic limit of the model

in which the kinetics is captured by a mean-field theory, a
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Figure 2. A Model Based on Branching and

Annihilating Random Walks Predicts Quan-

titatively Mammary Branching Morpho-

genesis

(A) Schematic of the model. Active ductal tips

choose between ductal elongation, stochastic

branching through tip bifurcation, or termination

when in proximity to a neighboring duct.

(B) Comparison between the experimental and

theoretical structure of mammary glands.

(C) Comparison between the experimental and

theoretical topology of the trees, displaying large

heterogeneity, with different subtrees (defined as

parts of the tree starting at level 6, delineated as

dashed line, with a black box showing an example

of a subtree) growing to widely different sizes.

(D–F) The BARW model predicts quantitatively the

evolution of the probability for tips to terminate (D),

the cumulative distribution of subtree size (E), and

the subtree persistence to a given branch gener-

ation number (F). Data from Scheele et al. (2017).

Shaded area and error bars in (E and F) represent

mean ± 1 SD confidence intervals. Error bars in (D)

represent mean and SEM. Black represents ex-

periments and green theoretical predictions from

simulations.

See also Figure S2 and Movie S1.
manifestation of a ‘‘two-species Fisher-KPP equation’’ (Fisher,

1937) (Method Details):

8>><
>>:

vta=DV2a+ rba

�
1� a+ i

n0

�

vt i = rea+
rb
n0

aða+ iÞ
; (1)

where a(x,t) and i(x,t) denote, respectively, the local concentra-

tion of active (tip) and inactive (duct) segments or ‘‘particles.’’

Referring to the description of themodel dynamics above, active

particles diffuse with diffusion constant D while producing inac-

tive segments at rate re (reflecting the process of ductal elonga-
C

tion), branch at rate rb, and annihilate

when they meet another particle (reflect-

ing the process of tip inactivation), giving

rise to a logistic growth term saturating at

a total steady-state density, n0 (for details

of how Equation 1 emerges from the sto-

chastic model and can be related to bio-

logical signaling pathways, see Method

Details). Within this framework, both

theory and numerical simulations pre-

dict that, during expansion, active tips

become self-organized into a narrow

pulse at the growing front of the devel-

oping epithelium, traveling at constant

speed as a solitary wave and leaving in

its wake an inactive ductal network of

constant density (Figures 3A, 3B, and

S4D–S4I; Movie S1).
From a biological perspective, this behavior provides a natu-

ral explanation for the constant speed of invasion, a robust

feature of mammary morphogenesis (Paine et al., 2016). At

the same time, the theory predicts that ducts should be

spatially patterned at a constant density (Figures 1A and 1B),

while active tips should localize in a predictable pulse-shape

distribution at the edge of the invading front. To test these

predictions quantitatively, we performed EdU-pulse labeling

of mice at 5 weeks of age (approximately the mid-point of

branching morphogenesis of the mammary gland) and used

whole gland reconstruction to both quantify the morphology

of the network (Figures 3C and S4J) and define the regional

localization of active tips (defined as proliferative tips with
ell 171, 242–255, September 21, 2017 245
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Figure 3. Branching and Annihilating Random Walks Reproduce the Kinetics of Mammary Invasion

(A) Numerical simulation of the model at different developmental time points with ducts shown in black and active tips in red.

(B) Theory predicts a self-organized solitary pulse of active tips positioned at the growing edge of the network, leaving behind a trail of inactive ducts of constant

density.

(C) 3D reconstruction of a fourth mammary gland following an EdU pulse at 5 weeks showing the position of active tips. Active tips are localized preferentially at

the invasion front, mirroring qualitatively the prediction of the model.

(D) Density profiles of ducts (black) and fully proliferative tips (red), averaged over n = 4 glands, alongside theory (red and black lines, respectively) revealing good

quantitative agreement. Error bars represent mean and SEM. Scale bar, 5 mm.

See also Figure S3.
>50% of EdU+ cells, Figures S4J and S4K). Importantly, we

found good qualitative agreement between experiment and

theory, with active tips present at the edge of the growing front

and a remarkably constant density of trailing ducts (Figure 3D).

Quantitatively, analysis of the spatial profile at the growing front

showed that the density of active tips decayed exponentially
246 Cell 171, 242–255, September 21, 2017
both ahead and behind the front, with the decay length of the

former larger than the latter by a factor of ð ffiffiffi
2

p � 1Þ, all key
and non-trivial predictions of the Fisher-KPP dynamics (Figures

S4F–S4I; Method Details).

Together, these results suggest that the global spatiotem-

poral dynamics of mammary ductal morphogenesis can be
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Figure 4. Self-Organized Properties of

BARWs Predict Both Giant Density Fluctua-

tions and Emergent Directional Bias of

Ducts

(A and B) Experimental variance (y axis) versus

average (x axis) of duct volume in boxes of

increasing size, L (A). The variance in density of the

gland at different length scales grows as a power

law (B, black bars), with an exponent larger than

1/2 (B, thin and dashed black lines represent

exponents of 1/2 and 1, respectively), indicative

of giant number fluctuations, and quantitatively

predicted by the BARW model (green line).

(C and D) Self-organized directional invasion pro-

ceeds from local negative interactions. (C) Repre-

sentative example of the outline of an 8-week

fourth mammary gland (same as Figure 2B), where

the angle q of each branch segment is calculated

relative to the AP-axis. (D) Experimental (black

bars) and theoretical (green line) distributions

showing probabilities of finding a branch growing

with a given angle q. The experimental distribution

is predicted quantitatively by the model even in the

absence of a large-scale directional gradient. Error

bars indicate mean and SEM.

See also Figures S4 and S5.
understood as a process of self-organization following from a

program of stochastic tip bifurcation arrested by tip termination

at the intersection with neighboring ducts.

Giant Density Fluctuations and Self-Organized
Directional Invasion during Mammary Morphogenesis
Although the proposed mechanism of branching morphogen-

esis can ensure a uniform density of ducts, statistical fluctua-

tions during growth generate large spatial variations in the

distribution of active EdU+ tips (Figure 3C). Indeed, the EdU-

pulse assay reveals duct-depleted regions formed either by

chance mass termination of tips (Figure S5A) or locally ‘‘diver-

gent’’ flows of active tips randomly exploring other regions

(Figure S5B), both behaviors being well-reproduced in the

numerical simulations of the model dynamics. Importantly, ac-

cording to the rules of the model dynamics, the trailing distribu-

tion of newly formed ducts is frozen or ‘‘quenched’’ in the fat

pad. Therefore, we expect that the statistical fluctuations of

epithelial density should persist in the mature network. Thus,

in addition to the prediction of the average density profiles of

active tips and mature ducts, the model makes further key

quantitative predictions on the statistical properties of spatial

density fluctuations.

We thus quantified these fluctuations by defining the spatial

average, nL, and SD, (Dn)L, of duct volume in boxes of viable

size L (see Figure 4A for a schematic). For systems at equilibrium

(in which each elemental process is equilibrated by its reverse,

the property of detailed balance), the central limit theorem re-

quires that ðDnÞL = naL with the exponent a = 1/2. By contrast, in

systems characterized by non-equilibrium fluctuations, a can

take values larger than 1/2 (Ramaswamy et al., 2003; Narayan

et al., 2007)—the phenomenon of giant number fluctuations.

Indeed, using the same parameter set as before, model simula-
tions revealed a robust power law dependence of (Dn)L (Fig-

ure 4B, green line), with an exponent atheory z 0.66, that

increased with decreasing branching rate (Figure S5C).

Turning to previous mammary gland reconstructions at

8 weeks of age, we found many instances of large spatial den-

sity fluctuations that could not be accounted for by boundary

effects, or by the presence of obstacles such as lymph nodes.

We therefore applied the same statistical approach to deter-

mine experimentally the quantitative dependence of (Dn)L
and nL (n = 14 glands from 7 mice). Strikingly, this analysis re-

vealed a robust power law dependence over more than three

orders of magnitude (black dots, Figure 4B), with an exponent

of aexp. z 0.65 ± 0.02 (mean ± SEM), consistent with giant

number fluctuations in vivo. Moreover, the experimental data

collapsed on the theoretical curve with extremely high preci-

sion (Figures 4B and S5D), emphasizing the robustness of

the model prediction (R2 = 0.90, R2
log = 0:99). Overall, this anal-

ysis uncovers an unexpected out-of-equilibrium feature of

branching morphogenesis in vivo and serves as a strong test

of the validity and predictive power of the BARW model.

In particular, this shows that, while the proposed mechanism

enforces (in a self-organized manner) a robust and constant

averaged epithelial density, the local density is, as a result,

only weakly regulated.

A further ubiquitous feature of mammary gland morphogen-

esis is the appearance of directional biases in the growth of

the ductal network, suggestive of a mechanism that guides

tips distally (Figures S5E–S5J). Indeed, quantification of the dis-

tribution of angles q between a given branch and the horizontal

proximal-distal axis (Figures 4C and S5K) revealed a 2-fold

bias toward a proximal-to-distal orientation (Figure 4D). A puzzle

in the field has been the lack of identification of any large-scale

gradient that could cause this anisotropy (Gjorevski and Nelson,
Cell 171, 242–255, September 21, 2017 247
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Figure 5. Perturbation Experiments Reveal

the Molecular Basis of Termination and

Branching

(A) Comparison between a representative re-

constructed fourth mammary gland (right) in the

presence of TGF-b1 soaked beads (blue spheres)

and a simulated theoretical counterpart (left). This

confirms tip termination in proximity (light blue

asterisks) to TGF-b1 soaked beads.

(B) Comparison between a representative re-

constructed fourth mammary gland (right) in the

presence of control inactive beads soaked in PBS

with 0.1% BSA (blue spheres) and a simulated

theoretical counterpart (left).

(C) Comparison between a representative re-

constructed third mammary gland (left) in the

presence of FGF10 soaked beads (blue spheres)

and a simulated theoretical counterpart with

local 2-fold increase in branching rate (right).

Active TEBs are marked by red arrowheads. Scale

bar, 2 mm.

See also Figure S5.
2011). However, we reasoned that such a directional bias could

derive naturally from the BARW model, even in the absence of

global chemical cues or gradients, because branches growing

toward the proximal region are more likely to terminate against

existing ducts (i.e., less likely to give rise to progeny), resulting

in an ‘‘effective’’ and self-organized bias emerging from isotropic

short-range interactions. To test this hypothesis, we computed

the theoretical prediction from the same model as above. Strik-

ingly, the model was able to predict quantitatively the experi-

mental profile (R2 = 0.95, Figure 4D), suggesting that directional

bias may simply emerge as a natural consequence of the

BARW model.

Molecular Basis of Tip Termination and Branching
Finally, given the importance of tip annihilation in our framework,

we sought to test in a more direct way its underlying molecular

basis. Ectopic delivery of TGF-b by large pellets has been shown

to reversibly inhibit mammary ductal growth (Silberstein and

Daniel, 1987). Therefore, to test the local action of TGF-b
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signaling, we implanted small TGF-b1-

soaked agarose beads into the mammary

fat pads of 4-week-old mice and waited

for 2 weeks before sacrificing the mice

(Figure 5A; Method Details). Importantly,

as predicted by the theoretical simula-

tions (Figures 5A, S5L, and S5M; Method

Details) and as opposed to experiments

with control beads soaked in PBS with

0.1% BSA (Figures 5B, S5N, and S5O),

we found that mammary ducts never

colonized regions rich in TGF-b1 beads,

while we could observe numerous events

of tips having stopped in their close

proximity (100–200 mm, blue asterisks on

Figure 5A). By contrast, the branching

pattern was unaffected in regions devoid
of beads (Figures 5A and S5P). These observations support

the hypothesis that chemical signaling from maturing ducts

regulate the termination of active terminal end-buds and

implicate a role for TGF-b1 in providing the cue in a very local

manner.

Next, we wished to assess quantitatively the effect of known

positive regulators of branching morphogenesis. We thus per-

formed a similar assay using FGF10-soaked beads (Figure 5C),

as FGF10 has been identified as the predominant stromal FGF

ligand expressed during pubertal mammary morphogenesis

(Zhang et al., 2014). Notably, we found that FGF10 induced a

2-fold increase in branching, consistent with its proposed role

in driving branch initiation in in vitro studies (Zhang et al., 2014),

with a corresponding densification of the network close to beads,

which was well-reproduced in model simulations (see Figure 5C;

Method Details).

Together, these two sets of experiments provide both an addi-

tional test of the branching and annihilating random walk frame-

work and a molecular basis for the regulatory program.
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Figure 6. Branching and Annihilating Random Walks Can Reproduce Quantitatively the 3D Kidney Topology

(A) Schematic of kidney morphogenesis as a stochastic branching process where active tips (red) either elongate, branch, or stop contributing to branching via

nephron differentiation (yellow).

(B) Reconstructions of murine kidney at E13, E15, E16, and E18 (left to right) with generation number of segments color coded in blue.

(C) Typical output of numerical simulations of BARW model at corresponding time points.

(legend continued on next page)
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Kidney Morphogenesis as a 3D Branching-Annihilating
Random Walk
So far, we have restricted our analysis to the quasi 2D geometry

of the mouse mammary gland. Therefore, to address the poten-

tial generality of themodel to other organs, we considered the 3D

incarnation of the BARWmodel using the development of kidney

as a 3D system. During kidney morphogenesis, the ureteric bud,

a single outgrowth that arises around embryonic day 11 (E11)

from the nephric duct, arborizes to form the collecting system

through a repeating process of mainly dichotomous branching.

During the course of this iterative branching process, tips induce

an aggregate of adjacent capmesenchyme to undergo amesen-

chymal to epithelial transition, thereby initiating the first steps

of nephrogenesis, i.e., the formation of nephrons, the kidney’s

filtration unit. These aggregates continue to mature while the

renal connecting tubule concomitantly forms and joins these

nascent nephrons with branching collecting ducts (Short et al.,

2014; Sampogna et al., 2015; Cebrián et al., 2004). Crucially,

as kidney development progresses, a growing subset of older

ureteric tips continue to fuse with adjacent maturing nephrons.

Once occupied, these tips are thought to no longer contribute

to further branching (Sampogna et al., 2015; Costantini and

Kopan, 2010) so that they can be considered to have undergone

branching termination (Figure 6A).

Motivated by these findings, we thus considered whether

the BARW model could predict kidney morphogenesis. Indeed,

the convergence of the BARW model toward balanced ductal

bifurcation and termination described above is quite general,

applying in all dimensions. However, simulating the model dy-

namics in 3D (Figures 6B, 6C, and S6) revealed that this conver-

gence, for the same annihilation radius, occurs on much longer

timescale (around 3 versus 10 generations, on average, Fig-

ure 6D). This behavior can be explained intuitively through differ-

ences in the frequency of random collisions between ducts and

tips, which becomemuch rarer in 3D as compared to 2D. From a

biological perspective, this would mean that the topology of 3D

branched organs should appear to be predominantly geometric

(deterministic) early in development, displaying serial rounds of

symmetric branching events without termination and only later

becoming stochastic in character. Interestingly, such behavior

is qualitatively consistent with recent reports by several groups

using detailed 3D reconstructions (Short et al., 2014; Sampogna

et al., 2015), showing structural heterogeneity only at higher

branch levels. We therefore analyzed original and more recent

data from (Sampogna et al., 2015), involving kidney reconstruc-

tions from E12 to E19, to test whether the same framework could

apply during the seemingly non-stereotypical later phase of

morphogenesis (Figures 6C and S6).

To develop a more precise quantitative comparison, we

considered a numerical simulation of the branching dynamics
(D) Experimental versus theoretical tip termination probability as a function of g

termination R0
a = 0.25 as the only fitting parameter.

(E) The model predicts a self-organized zone of active tips growing at the peripher

the nephrogenic zone observed in vivo.

(F) Tree representation of a E17 kidney branching topology (top, green) and the o

represent mean and SEM.

See also Figure S6 and Movie S2.
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in an unconfined 3D geometry (Figures S6A–S6C; Movie S2). In

this case, the dynamics depends only on the ratio of the annihi-

lation radius to the characteristic duct length, R0
a =Ra=ld (Figures

S6D–S6F). In contrast to the 2D setting, this parameter becomes

crucial in 3D, where the probability of two branches to cross

becomes of measure zero. Moreover, as kidney expands

anisotropically, we renormalized all rate constants with respect

to growth orientation to match the experimental aspect ratio

(Figure S6C; Method Details).

Interestingly, with R0
a = 0:25, a value close to that found for

mouse mammary gland, we could reproduce with high precision

the growth characteristics of the E19 mouse kidney, as exempli-

fied by the evolution of the tip branching versus termination

probability as a function of branch level (Figure 6D). As

mentioned above, ductal evolution is characterized by a pro-

tracted early phase of symmetric branching, converging slowly

toward balanced fate. R0
a is thus the key and only fitting param-

eter, and all subsequent comparisons to experiments do not

involve the adjustment of any additional parameter.

We then compared the experimental and theoretical topol-

ogies of kidneys (Figure 6F), as well as the distributions of

branch number as a function of branch level across a wide

range of developmental time points (Figures 7A, S6H, and

S6I). Given the simplicity of the model, these results showed

remarkably good correspondence, revealing an initial phase of

geometric ductal expansion (with the number of branches at

level n growing as 2n), followed by a plateauing and widening

of the distributions, a manifestation of increasing ductal termi-

nation (R2 = 0.93 at E13, R2 = 0.95 at E15, R2 = 0.94 at E17,

and R2 0.93 at E19, Figures S6I–S6L). Importantly, this behavior

does not arise from purely geometric anisotropies, as can

be seen in the same simulation without termination events

ðR0
a = 0Þ (Figure S6J), or with termination in an isotropic geome-

try (Figures S7A and S7B).

Stochasticity in Kidney Morphogenesis and Nephron
Number Specification
In commonwith themammary epithelium, growing tipswere also

predicted to become self-organized into a pulse of activity at the

periphery of the developing kidney, while newly formed neph-

rons were predicted to form as a secondary pulse behind this

front (Figure 6E). Such behaviormatched the known organization

of the kidney into a nephrogenic zone positioned at the growing

periphery of the tissue (Figure S7C) (Sampogna et al., 2015;

Short et al., 2014). Moreover, although the time evolution of

both the active tip and nephron density can depend on time var-

iations in branching rate, plotting one versus the other provided a

robust, time-independent test of model.

Using glomeruli, the capsule of capillaries located at the begin-

ning of a nephron (Sampogna et al., 2015), as a proxy for the
eneration for mammary gland (purple) and kidney (green), using the radius of

y of the kidney, followed spatially by a domain of tip termination, reminiscent of

utput of the theory at the corresponding time point (bottom, black). Error bars
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Figure 7. BranchingandAnnihilatingRandom

Walks Can Reproduce Quantitatively the

Detailed Properties of Kidney

(A) Using the radius of termination Ra as the

only free parameter, the model predicts well the

number of segments per generation at different

time points of embryo development (E13, E15,

E17, and E19 in purple, green, blue, and orange,

respectively).

(B) Inactive tip number (assessed indirectly via

glomeruli staining from [Sampogna et al., 2015] in

black, or glomeruli counting via a method of acid

maturation from [Cebrian et al., 2014] in blue)

versus total number of tips, displaying a power

law after a phase of purely symmetric branching,

predicted by the model (green).

(C) Subtree persistence at different developmental

time points (squares) compared to the model

(lines).

(D) Cumulative subtree size distribution at different

developmental time points (squares) compared to

the model (lines).

(E) Variance (y axis) versus the average (x axis) duct

volume in a box of size L (experiments in black) in

kidney, showing an exponent larger than 1/2 (thin

and dashed black line represent exponents of 1/2

and 1, respectively), indicative of giant number

fluctuations. The green and blue lines are pre-

dictions from default model (no repulsion, R0
a =

0.25), andmodel with repulsion (fr = 0.33,R0
a = 0.5).

(F) Tree survival probability versus termination

radius, showing a phase transition above which

kidney systematically become fully annihilated.

Red dashed line shows the best-fit value of Ra

used in (A)–(D). Shaded areas represent 95%

confidence intervals, and error bars represent

mean and SEM.

Lines in (A)–(D) are model predictions, using the

parameter R0
a fitted from Figure 6D. See also Fig-

ure S7 and Movies S2 and S3.
number of maturing nephrons, we found that, after an initial

phase of pure tip production without any nephrons, both quanti-

ties robustly scaled experimentally, with the relationship well-fit

by a power law (Figures 7B, S6K, and S6L). Such scaling argues

for simple time-invariant rules underlying nephron specification,

because deviations from this time-invariance would cause

deviations from the observed scaling (as simulated in Fig-

ure S7D). Crucially, we then compared this observation to our

model, using the same parameter set as that used above, and

found a good prediction for the scaling relationship throughout

the entire time course of embryonic development (R2 =

0.78, R2
log = 0:97).

To determine whether the model could also predict the

detailed heterogeneity of branching structures as well as the av-

erages, we examined the size distributions and persistence of

subtrees at each time point (defined as in mammary gland).

These were consistently broadly distributed, indicative of

large-scale heterogeneity, and adopted similar functional de-

pendences to their mammary counterparts, indicative of

conserved (or universal) underlying properties. Crucially, the dis-
tributions of subtree persistence were consistently very well-fit

by the model at all developmental time points (Figure 7C, R2 =

0.95 at E13, R2 = 0.99 at E15, R2 = 0.97 at E17, and R2 = 0.97

at E19) as were subtree size distributions (Figure 7D, R2 =

0.89 at E13, R2 = 0.99 at E15, R2 = 0.99 at E17, and R2 = 0.93

at E19).

Finally, although the model captures successfully several non-

trivial features of the experimental data, arguing for conserved

rules underlying both mammary gland and kidney morphogen-

esis, we noted that kidney reconstructions were characterized

by a rather regular spacing between tips, which was consistently

more ordered than the numerical simulations of the model (Fig-

ures S6H and S6I). Indeed, although we found again evidence

of giant number fluctuations (Figure 7E), the model slightly over-

estimated the amplitude of fluctuations (Figure 7E), hinting that

tips may be partially self-avoiding, as proposed by (Davies

et al., 2014). To incorporate this effect into the model, we pro-

posed that tips, in addition to their persistent random motion,

are repulsed by neighboring tips and ducts when within a radius

Rr. With vr defining the characteristic speed change induced by
Cell 171, 242–255, September 21, 2017 251



this repulsion, the ratio fr = vr/v provides a measure of the

strength of the repulsion (Quantification and Statistical Analysis).

For large values of fr, termination becomes extremely rare,

yielding a behavior inconsistent with the observed degree of kid-

ney heterogeneity and nephrogenesis kinetics. However, for

small values of fr = 0.2 and a correspondingly larger value of

the annihilation radius Ra (Quantification and Statistical Anal-

ysis), we could still obtain a satisfactory fit to the data (Figures

S6J and S6L), while obtaining a more ordered kidney structure

(Figure S6I). Interestingly, without further adjustment, this

improved the fit to the observed density fluctuations (R2 =

0.75, R2
log = 0:98, Figure 7E).

These findings argue that, although self-avoidance is not the

dominant characteristic of kidney morphogenesis (Figures

S6M–S6O), it may cooperate with termination, i.e., nephron

maturation, to produce a partially ordered structure. Notably,

both elements of the model arise from purely local rules, main-

taining the self-organizing character of branching morphogen-

esis. Indeed, this might explain why it can proceed robustly

in vitro in the absence of external chemical or morphogen gradi-

ents (Davies et al., 2014).

Branching Defects as a Route to Premature Termination
of Branching Morphogenesis
Based on these findings, we then questioned their implications

for pathologies of branched organs, such as kidney, which

have been linked to defects in branching morphogenesis. For

instance, hypertension has been proposed to be at least partially

explained by insufficient nephron number (Brenner et al., 1988),

whereas renal agenesis is a relatively frequent congenital defect

in humans, mirroring the GDNF knockout in mice, that results

in the formation of tiny rudimentary ductal trees in the kidney

(Pichel et al., 1996).

Interestingly, by the stochastic nature of the BARW, chance

events may also lead to the premature extinction of active tips,

which annihilate against the existing ductal network, inhibiting

kidney growth. Although the frequency of such events is negli-

gibly small for the parameters of wild-type tissue (Figures 7F

and S7E), higher values of the annihilation radius cause the

extinction probability to increase dramatically (Figures 7F, S7F,

and S7G; Movie S3). Numerical simulations reveal a critical point

above which early extinction always occurs (Figure 7F; Quantifi-

cation and Statistical Analysis), as well as a continuous transition

to a non-zero extinction probability below this critical value,

which could explain the variable nature of small ductal trees

observed in GDNF knock-out mice.

Based on this insight, we examined branching morphogen-

esis on E15.5 littermate kidneys that developed under the

condition of mild maternal-fetal Vitamin A-deficiency as

described previously (Sampogna et al., 2015). These kidneys

are nearly two times smaller than wild-type (Figures S7H and

S7I) and display larger subtree size heterogeneity (n = 4 mice,

p < 0.05), although the total number of branches remains normal

(Sampogna et al., 2015). Noting that vitamin A-deficient kidneys

were markedly smaller, we tested whether this measured

decrease in branch length was enough to reproduce the

enhanced heterogeneity, by producing earlier crowding-

induced tip termination (Method Details). We found that a uni-
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formly decreased branch length was indeed sufficient to repro-

duce quantitatively the changes in branch generation distribu-

tion in vitamin A-deficient mice (Figure S7J). Further studies

will be needed to address, more generically, whether such

mutant conditions can be understood in terms of ratio between

branch length and termination radius, i.e., of their proximity to

the annihilating critical point.

Balance between Tip Termination and Branching Is Also
Observed in Human Prostate
Finally, to further explore the generality of the proposed

mechanism of branchingmorphogenesis, we turned to consider

the human prostate, which consists of independent sub-

units branching independently from the urethra (McNeal,

1968). Organogenesis of the prostate shares key features

of tip driven morphogenesis as described above in breast and

kidney formation: the adult branching structure derives from

epithelial ductal outgrowths into surrounding urogenital mesen-

chyme during embryogenesis and the immediate postnatal

period (Powers and Marker, 2013).

From the tracing studies of ductal subtrees, based on large-

scale 3D reconstructions of adult human prostates (n = 5 from

5patients), some of which extended to 70 generations of branch-

ing, we found that some regions terminate early, with tips form-

ing differentiated acini structures, while others grow extensively

(Figure S7K). From a plot of the relative probability of tip termina-

tion versus branching, we found again that the overwhelming

majority of subtrees displayed a striking degree of balance

between ductal termination and branching (Figure S7L). Addi-

tionally, we found that the functional shape of the distribution

was again similar to the other organs, with a few subtrees

growing to up to 10 times the average subtree size (Figure S7M).

These findings suggest that the paradigm uncovered for

mammary gland and kidney morphogenesis may be translated

to a priori different biological settings.

DISCUSSION

In this study, we have investigated how the branching pattern

of the mouse mammary gland epithelium and kidney emerge

throughout development. Using a combination of whole-

organ 3D reconstruction, proliferation kinetics, and biophysical

modeling, we have provided evidence that branching morpho-

genesis proceeds from the spatial competition of equipotent

tips, which randomly explore space through a process of ductal

elongation and stochastic branching. If this process occurred

without competition between growing tips, branched organs

would be characterized by stereotypical rounds of purely sym-

metric branching, with the number of branches increasing with

branch level n as 2n. Indeed, such behavior would serve to mini-

mize the time required to build a branched structure while filling

space efficiently. However, reconstructions of mouse mammary

gland, kidney, and human prostate reveal a different scenario,

where tip terminations occur even at the earliest stages of

branching morphogenesis and rapidly balance tip bifurcations

at the population level.

Based on the scarcity of ductal crossovers in mammary gland,

we propose that the dominant source of tip termination is the



presence of neighboring ducts inhibiting growth. This provides

a density-dependent feedback that naturally balances ductal

branching and tip termination. This hypothesis challenges the

concept of branching morphogenesis occurring through a rigid

and deterministic sequence of genetically programmed events,

and replaces it by a stochastic self-organizing model of develop-

ment. After deducing the branching rate from in vivo measure-

ments, our model predicts nearly perfectly and without adjust-

able parameters the network topology and spatial structures of

adult mammary glands, while alsomaking a number of additional

non-trivial quantitative predictions.

In particular, it predicts the self-organization of active tips

into a spatial domain or pulse, localized at the growing front

of the network, which invades into the fat pad at constant

speed, leaving behind a constant density of mature ducts. As

a consequence, our model suggests that the directional inva-

sion of the mammary gland toward the distal end of the fat

pad does not need to be guided by a global chemotactic

gradient, but instead can be explained quantitatively in a self-

organized manner from the short-range annihilating properties

of tips and ducts. As a non-equilibrium process, the BARW

model predicts quantitatively the existence and scaling depen-

dence of hallmark giant density fluctuations, which we verify

experimentally.

Finally, we have shown that the model applies equally well in

the 3D setting of the developing mouse kidney, reproducing

accurately the network heterogeneity, with some subtrees colo-

nizing large parts of the kidney while others terminate precipi-

tously, as well as the spatiotemporal pattern of nephrogenesis.

Such behavior suggests that this self-organized pattern of

growth, consistent with the in vitro growth capability of kidney

trees, may constitute a conserved (universal) mechanism of

branching morphogenesis across different tissues, shifting the

focus of future studies to the collective spatiotemporal fate

control of branching and termination of entire tips, rather than

on individual cells.

From a molecular mechanistic perspective, some of the pro-

cesses underlying tip termination have been studied individually

in several organs. In particular, inhibition of tip growth through

TGF-b signaling has been demonstrated in both mammary and

prostate glands (Silberstein, 2001; Powers and Marker, 2013).

TGF-b is also a good candidate to provide crowding-induced

feedback (Silberstein, 2001), as it is known to be diffusible

in the stroma, is secreted by mature ducts, and has been

shown both in vitro and in vivo to regulate the branching pattern

of pubertal morphogenesis (Silberstein and Daniel, 1987),

as confirmed here. Moreover, it was recently reported from

in vitro culture experiments that the TGF-b superfamily, in partic-

ular Bmp7, was also implicated in crossover avoidance in kidney

(Davies et al., 2014).

Thus, these findings question the underlying molecular basis

of the BARWmodel. Given the diffusible nature of key underlying

regulators, we investigated whether generic reaction-diffusion

models could explain the BARW phenomenology. Interestingly,

we found that such branching and annihilating dynamics can

indeed emerge naturally and robustly from simple Turing-Mein-

hardt type models (Meinhardt, 1982; Guo et al., 2014) involving

only spatial interactions of an activator, an inhibitor, and a
consumed substrate (Figure S7N; Method Details). Taken as

a whole, our study demonstrates that the morphogenesis of

complex ductal tissues can be understood and predicted

quantitatively on the basis of a remarkably simple set of local

rules that direct the robust self-organization of a large-scale

network structure.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit anti-Keratin 14 Polyclonal BioLegend Cat# 905301 RRID: AB_2565048

rat anti-CD324 (E-cadherin) DECMA-1 Affymetrix eBioscience Cat# 14-3249-82 RRID: AB_1210458

Alexa Fluor 488 donkey anti-rat IgG (H+L) Thermo Fisher scientific Cat# A21208 RRID: AB_2535794

Alexa Fluor 568 donkey anti-rabbit IgG (H+L) Thermo Fisher scientific Cat# A10042 RRID: AB_2534017

Chemicals, Peptides, and Recombinant Proteins

Collagenase A Roche Diagnostics Cat# 10 103 578 001

Hyaluronidase Sigma-Aldrich Cat# H3884

DAPI solution (1mg/ml) Thermo Fisher scientific Cat# 62248

Vectashield Hard set Vector Laboratories Cat# H-1400

Recombinant Mouse FGF-10 R&D Systems Cat# 6224-FG-025

Recombinant Mouse TGF-b1 R&D Systems Cat# 7666-MB-005

Affi-Gel Blue Gel Bio-rad Cat# 1537301

Critical Commercial Assays

Click-iT EdU Alexa Fluor 647 Imaging Kit Thermo Fisher Scientific Cat# C10340

Experimental Models: Organisms/Strains

FVB/NJ Taketo et al., 1991 https://www.jax.org/strain/001800

MMTV-Cre (FVB) Wagner et al., 1997 https://www.jax.org/strain/003553

LSL-YFP (FVB) N/A https://www.jax.org/strain/006148
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources, reagents and simulation tools should be directed to the Lead Contact, Prof. Benjamin

Simons (bds10@cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All mice were female, bred on a FVB/NJ background, and in the age ranging from 3.5 – 8 weeks. Mice were randomly assigned to the

experimental groups, and mice were not selectively excluded from the experiments. All animal procedures and experiments were per-

formed in accordance with national animal welfare laws under a project license obtained from the Dutch Government, and were re-

viewed by the Animal EthicsCommittee of theRoyalNetherlandsAcademyof Arts andSciences (KNAW).Micewere housed in a barrier

facility in conventional cages and received food and water ad libitum. All personnel entering the barrier must wear protective clothing

(including head caps, specials clogs). All animals were received directly from approved vendors or generated in house.

METHOD DETAILS

Mice Experimental Details
Mice of 3.5, 5 or 8 week-old were injected IP with 0.5mg 5-ethynyl-20-deoxyuridine (EdU, Thermo Fisher Scientific) diluted in phos-

phate buffered saline (PBS).Micewere sacrificed 4 hours after EdU injection, and the 3rd, 4th, and 5thmammary glandswere collected

and processed as whole-mount glands. For beads implantation experiments, 4 week-old MMTV-Cre/LSL-YFP mice were injected

with 5 ml of Affi-gel blue beads coated with recombinant protein.

Local application of Affi-gel blue beads in mammary glands
Affi-gel blue beads (Bio-RAD Laboratories) were washed 3 times for 5 min in sterile PBS. Next, beads were incubated with excess of

50 mg/ml recombinant mouse TGF-b1 (R&D Systems) in 4mM HCL or 100 mg/ml recombinant mouse FGF-10 (R&D Systems) in PBS
e1 Cell 171, 242–255.e1–e14, September 21, 2017
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0.1% BSA for 1 hour at 37�C to adhere the proteins to the beads. Control beads were incubated with PBS 0.1% BSA. Beads were

pelleted after and resuspended in sterile PBS. To implant the beads, mice were anesthetized and a small incision was made to gain

access to the 3rd or 4th mammary gland. A small pocket wasmade in the fat pad (so that they did not physically prevent the invasion of

the mammary epithelium, but still delivered proteins in its vicinity) and 5 ml of beads was injected (approximately 30-60 beads per

gland). After 2-3 weeks, mammary glands were dissected and processed as whole mounts.

Whole-mount immunofluorescence staining of mammary glands
Mammary glands were dissected and incubated in a mixture of collagenase I (1mg/ml, Roche Diagnostics) and hyaluronidase

(50 mg/ml, Sigma-Aldrich) at 37�C for optical clearance, fixed in periodate-lysine-paraformaldehyde (PLP) buffer (1% paraformalde-

hyde (PFA, Electron Microscopy Science), 0.01M sodium periodate, 0.075M L-lysine and 0.0375M P-buffer (0.081M Na2HPO4 and

0.019M NaH2PO4) (pH 7.4)) for 2 hours at room temperature (RT), and incubated for 2 hours in blocking buffer containing 1% bovine

serum albumin (Roche Diagnostics), 5% normal goat serum (Monosan) and 0.8% Triton X-100 (Sigma-Aldrich) in PBS. For EdU cell

proliferation staining of whole-mount mammary glands, a click-it staining (Click-iT EdU, Thermo Fisher Scientific) was performed ac-

cording to themanufacturer’s instructions before staining with primary antibodies as described above. Next, primary antibodies were

diluted in blocking buffer and incubated overnight at RT. Secondary antibodies diluted in blocking buffer were incubated for at least 4

hours. Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI, 0.1 mg/ml; Sigma-Aldrich) in PBS. Glands were washed with

PBS and mounted on a microscopy slide with Vectashield hard set (H-1400, Vector Laboratories). Primary antibodies: anti-K14 (rab-

bit, Biolegend, 905301, 1:700) or anti-E-cadherin (rat, Affymetrix eBioscience, 14-3249-82, 1:700). Secondary antibodies: donkey

anti-rat conjugated to Alexa 488 and donkey anti-rabbit conjugated to Alexa-568 (Thermo Fischer Scientific, A21208 and A10042

respectively, 1:400).

Whole-mount imaging of mammary glands
Imaging of whole-mount mammary glands was performed using a Leica TCS SP5 confocal microscope, equipped with a 405nm

laser, an argon laser, a DPSS 561nm laser and a HeNe 633nm laser. All images were acquired with a 20x (HCX IRAPO N.A. 0.70

WD0.5mm) dry objective using a Z-step size of 5mm (total Z stack around 200mm). All pictureswere processed using ImageJ software

(NIH, Bethesda, MD, www.nih.gov).

Models of branching and annihilating random walk
As a first attempt to model the dynamics, tip termination was first hypothesized to be mediated by contact between two actively

proliferating tips. Such a model mapped directly onto the classical problem of branching and annihilating random walks. Classical

branching and annihilating randomwalks (BARWs) are defined by a set of nwalkers undergoing randomwalks in d spatial dimensions

with a diffusion constantD. riðtÞi = 1::n denotes the position vector of each walker in space at a time t. In the general case, walkersA can

either branch into m+ 1 new walkers:

A/ðm+ 1ÞA; at rate rb; (2)
or annihilate into an inert state I when two walkers meet locally in
 space,

2A/I; at a rate that scales with volume as ra (3)
with the branch multiplicity m being a strictly positive integer. W
alkers that fall into the inactive state do so irreversibly and do not

diffuse, nor interact with other walkers. The total number of walkers, n, active or inactive, therefore evolves in time. siðtÞi = 1::n denotes

the state of each walker (with active denoted by 1 and inactive as 0). Defined in this form, this classical model has been studied exten-

sively (Cardy and Täuber, 1996). Insight into the behavior of the model can be gained from the corresponding mean-field rate equa-

tion for the local density of walkers, nðtÞ, which takes the form:

vtnðtÞ= rbmnðtÞ � ranðtÞ2 (4)

This equation predicts a pair of stationary solutions corresponding to an unstable inactive state ðn= 0Þ and a stable active state

ðns =mrb=raÞ. However, when fluctuations around the mean-field approximation are taken into account, the situation is more com-

plex: In particular, it has been shown that the system can belong to two distinct universality classes for either odd or even values ofm.

For even values ofm, the parity of the number of active particles is conserved upon branching, falling into the parity-conserving class,

while the case of odd values ofm falls into the directed percolation universality class (Cardy and Täuber, 1996). Theoretical analysis of

these two classes has been facilitated by the fact that they can be mapped on an Ising model, where branching and annihilation

events can be mapped onto Glauber and spin-exchange Kawasaki dynamics (Odor, 2004).

In mammary gland and kidney, development is driven by proliferative tips or terminal end-buds (TEBs), which either advance for-

ward, producing in their wake the ductal structure, or branch into two tips during a bifurcation event. In the model, the ductal region

deposited by tips was thus considered inert, i.e., it did not proliferate further nor move. Moreover, most branching events are

observed to involve tip bifurcation in which a single active tip divides into precisely two active tips. This translated to m= 1 in the
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formalism above. Importantly, since the ductal trees constitute the past trajectories of each individual active walker (or tip), the entire

time course of the process was reconstructed from the analysis of the final branching structure in space. Referring to the in vivo data

(Figures 1A and S1), it was clear that the tip trajectories did not behave as temporally uncorrelated random walks but, instead,

displayed a typical persistence length that could be read from the biological data. The model therefore had be amended by intro-

ducing a unit polarity vector, pi, which specified the direction of movement of a given walker. (The local velocity v of each walker

was taken to be the same.) This polarity vector undergoes a persistent random walk with characteristic time tp. Translated spatially,

this implied a persistence length of ductal branches of vtp and the long-term (i.e., at timescales larger than tp) diffusion constant of a

walker of v2tp.

Mean-field dynamics of front invasion
To account for the spatial dynamics of branching morphogenesis, the mean-field theory above must be amended to take into ac-

count of the evolving spatial structure. In line with the biological system, the initial condition was taken as a single active walker posi-

tioned at one side of a finite domain (Figure S1 and Movie S1). Following classical results of simple branching processes (Fisher,

1937), the spatial dynamics in d -dimensions could be written as8>><
>>:

vta=DV2a+ rba

�
1� a

a0

�

vt i = rea+
rb
a0
a2

(5)
where aðr; tÞ and iðr; tÞ represent, respectively, the local concent
ration of active and inactive particles and V2 denotes the Laplace

operator. Related to the description above, active particles diffuse with a diffusion constant D, branch at a rate rb and annihilate

when they meet, giving rise to a logistic growth term saturating at a density a0. Inactive particles are constantly produced either

when active particles move, or when two active particles meet. Their coefficient of diffusion is zero, expressing the fact that they

remain immobile and inactive. The first of these Equations (5) translates to the well-known Fisher-KPP equation, after Kolmo-

gorov-Petrovsky-Piscounov, which has been used as a simple approximation to describe front propagation (e.g., in the study of ad-

vantageous genetic mutations) (Fisher, 1937). The second equation, describing the concentration of inactive particles, is slave to the

dynamics of the active particles, and does not provide any feedback. According to this dynamics, the theory thus predicted that

active walkers would form a sharp front (of characteristic length
ffiffiffiffiffiffiffiffiffiffi
D=rb

p
), which invaded the tissue as a solitary wave, with velocity

V� = 2
ffiffiffiffiffiffiffiffi
Drb

p
. The associated wave profile links the unstable ða= 0Þ solution at the growing front of the ductal network to the stable

ða= a0Þ solution at the back (heteroclinic orbit).

Active tips thus formed a non-equilibrium stable steady-state (i.e., a constant density profile in time, but which was driven by con-

stant and compensatory creation/annihilation events), which invades the unstable inactive state, a= 0. However, this raised the prob-

lem of inactive particles that keep being produced at the back of the wave, driving a divergence in their concentration over time as

ifa0ðre + rbÞt. As the wave propagated linearly in time, this translated into a linear concentration gradient toward the back of the

waves, i.e., the concentration became higher and higher as x/N with slope a0ðre + rbÞ=V� (Figure S4D). Such behavior was clearly

unrealistic as a model of branching morphogenesis, calling for an alternative mechanism of active tip termination.

Revised model of tip termination
From the biological perspective, the regulation of tip termination could constitute an incredibly complicated process. For example,

each walker/tip could be specified early in development with disparate properties, and programmed to terminate at a given time. At

each bifurcation event, a given tip could segregate into two tips that both inherit a defined differentiation program. Alternatively, an

extrinsic regulatorymechanism based, for example, on hormonal levels (Sternlicht, 2006) could operate, where tips would be allowed

to grow and branch during a period T while they invade the full domain, becoming inactive on reception of a global signal at the end of

this period. Such dynamics still left a signature in the ductal structure, such that the theoretical concentration of ducts close to the

initial tip location was higher than at the more distant parts recently invaded.

Therefore, to define an alternative mechanism for tip termination, evidence from the experimental data was used to inspire a

simpler mode of regulation. Based on the homogeneity of ductal density (Figure 1B), the scarcity of ductal crossovers and the prox-

imity of inactive tips to existing ducts (Figure 1A), a revised model was considered in which active tips not only annihilate when they

come in proximity of one another, but also terminate when they come into proximity of an inactive particle (i.e., the trailing ducts):

A+ I/2I; at rate ra (6)

Such a process complicated the classical problem of BARWs, making it fully non-Markovian: Understanding the dynamics of

active walkers A required a knowledge of the full history of the random walk, and not just the current spatial configuration. Alterna-

tively, one could hide the non-Markovian character of the problem in the second species I, which previously was simply slave to the

active particles. This bore some resemblance to generalizations of directed percolation models in which a directed-percolation

(DP) process is coupled to a frozen field. A key difference was there are then infinite numbers of absorbing states, as opposed to

simply A= 0. However, in the current model, the frozen particles I actively feedbacked on the dynamics of A, a situation reminiscent
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of two-species epidemic type models (Rossi et al., 2000). In the presence of process (6), the continuous mean-field approximation to

the dynamics then modified Equation 5 to the form:8>><
>>:

vta=DV2a+ rba

�
1� a+ i

n0

�

vt i = rea+
rb
n0

aða+ iÞ
(7)
where, for the sake of clarity, a was renamed as n . One can resc
0 0 ale all times by 1=re, all concentrations by n0, and all distances byffiffiffiffiffiffiffiffiffiffi
D=re

p
, and introduce the dimensionless ratio r = rb=re, so that the system of equations in one-dimension (coordinate x) became:�

vta= v2xa+ rað1� a� iÞ
vt i = a+ raða+ iÞ (8)

The parameter r could also be removed by introducing two different scales for the concentrations of a and i. However, this param-

eter was kept so that the magnitude of the two concentrations could be compared in a transparent manner in subsequent analyses.

To find a traveling wave solution for a and i, it was convenient to change coordinates to the co-moving frame by defining a variable

z= x � Vt, where V is the wave velocity. The system of equations then became�
�Vvxa= v2xa+ rað1� a� iÞ
�Vvxi = a+ raða+ iÞ (9)

Non-integrability of these equations prevented an analytical solution. Instead, it was useful to perform two approximations setting

a � i in the first equation and rða+ iÞ � 1 in the second. This provided significant analytical insight into the dynamics, from which

the two assumptions could be justified a posteriori. With these approximations, the coupled equations took the form:�
�Vvxa= v2xa+ rað1� iÞ
�Vvxi = a

(10)

Compared to the classical Fisher-KPP equation, a difference was that the negative feedback did not arise from a, but from i, which

was dynamically produced by a. This produced KPP pulses instead of KPP waves, with a having a single stable state a= 0, and the

pulse joining an a= 0 front with an a= 0 back (homoclinic orbit). However, the concentration of the ‘‘inhibitor,’’ i, adopted a different

profile. The steady-state concentration for i was harder to read from Equation 10, but became obvious after substituting the second

equation for a into the first, and integrating once, leading to:

�Va= vxa+ ri

�
1� i

2

�
(11)

The constant of integration vanishes since all concentrations and their derivatives must vanish at x/N. It then became more

apparent that i = 2, a= 0 was a stable solution at the back at the wave, together with i = 0, a= 0 at the front. In contrast to the pulse

shape of the profile of active tips a, the concentration of inactive ducts i thus adopted a traveling wave solution. From a physical

perspective, this corresponds to the fact that active walkers can freely diffuse at the front of the wave, in the absence of inhibitors,

but that they are trapped by inactive walkers at the back of the wave, and become inactivated. These processes specify a ductal

network of well-defined, homogeneous, density i = 2 at which the gland is patterned. Inserting the ansatz a=Ael+ z for the profile

at the front of the wave into the linearized system of equations above, one obtained:

l+ =
�V ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � 4r

p

2
(12)

Similarly, at the back of the wave, with a=Ael�z, one obtained (noting that l� must be strictly positive),

l� =
�V +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 + 4r

p

2
(13)

As l± must be purely real, velocities below V� = 2
ffiffi
r

p
cannot propagate. Moreover, a classical result of such KPP systems is that the

velocity selected is exactly V�, as verified through numerical integration of these equations (Figures S4D–S4G). Therefore, the decay

length of the font and back of the pulse was given by (
l+ = �

ffiffi
r

p

l� =
� ffiffiffi

2
p

� 1
� ffiffi

r
p (14)
which predicted that the back of the pulse decays slower than the
 front. Concerning the validity of the approximations above, at the

back of the pulse, i/2 and a/0, and the first approximation a � i is trivially satisfied. At the front of the pulse, it followed from the

expressions above that a=iz2r. However, r was the ratio of the timescale of tip elongation to tip branching. On a discrete lattice, this
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translated to the inverse of the average number of lattice steps which thewalker explores before a branching event. Therefore, having

a sparsely branched structure like the mammary gland imposed the condition r � 1, as opposed to rz1, which would give rise to a

dense structure, and the assumption a=i � 1 can be made with high precision. Similarly, r � 1 allowed the validation a posteriori of

the second approximation rða+ iÞ � 1 (which, in fact, was exactly the same level of approximation as the first one, comparing r and

Oð1Þ). However, for the sake of completeness, numerical integrations of the full equations were also performed for r = 0:1 without

approximation (Figures S4E and S4F), as well as numerical integrations for r = 1 (Figure S4G), when the approximation was invalid.

These results verified that neither the phenomenology of the solution, nor the pulse asymmetry, are qualitatively affected.

Mammary gland parameters and numerical simulations
To confirm the validity of the analytical results obtained from the mean-field approximation to the model, full numerical simulations of

the BARWwere analyzed. From previous work on classical BARWs,mean-field theory was expected to be valid for small fluctuations

(i.e., small annihilation probabilities), while the active state could be destroyed by fluctuations when they become large. A quasi one-

dimensional front invasion was simulated by considering an elongated two-dimensional rectangular domain U of dimensions Lx and

Lz < Lx, so thatU= fðx; zÞ˛R2 : fx˛½0;Lx�; z˛½0; Lz�gg. The initial condition was taken as a single active walker located at the left side of

the domain ð0;Lz=2Þ, with polarity facing the right/posterior side, p= ð1; 0Þ. The length unit of the simulation was fixed by the elemen-

tary length of the randomwalk at each time point, l. Crucially, the most simple assumption for annihilation was taken so that an active

particle (tip) terminates deterministically when entering into an annihilation radius Ra of any active or inactive particle belonging to a

different duct. Therefore, there was no need for implementing a definite rate of annihilation ra as it emerged from the spatial interac-

tions. The timescale of the simulation was set as the time ts for each active particle to make an elementary step of length l = 1 in the

direction p. Therefore, the only truly free parameter of the numerical simulations was the branching rate rb, which controls the final

density of the ductal network, via the average branch length ld. More precisely, the key parameter in this problem was the dimension

of the fat pad, rescaled by the average branch length ld. For the default set of parameters used to describe mammary gland morpho-

genesis, the experimentally measured rescaled long and short dimensions of the mammary gland (resp. Lx=ld and Lz=ld, Figure S1D)

were used. 2000 full stochastic simulations were ran, and the results averaged, providing parameter-free predictions, i.e., they did not

involve the fitting of a free parameter.

Quantitative comparisons between the profiles of both a and i in the simulation agreed well with the analytical theory (Figures 3 and

S4). In an unbound two-dimensional domain, as predicted by the KPP mean-field theory, numerical simulations displayed a charac-

teristic pattern of radial expansion at a constant velocity (Figure S2A), with the active tips residing at the front of the invading wave.

This produced a robust and characteristic convergence to a non-equilibrium steady-state network configuration (Figure S2B), on the

timescale of a few generations, characterized by near-perfect balance between the rates of tip branching and termination.

The parameters for the mammary simulations were chosen as follows. Based on experimental measures (Figure 1), the rate of

branching was set to rb = 0:1, together with box sizes of Lx = 280 and Ly = 150. At each time step (with step time t = 1 used as the

unit time), tips were assumed to move forward by a length Vt = 1 (used as the unit length), along a polarity vector pi (specified in

2D by an angle q), which diffused by a random angle of amplitude dq=p=10. The annihilation radius was set to the characteristic width

of a mammary duct, estimated at Ra = 3 in simulation length units. Tips terminated if they passed the bounds of the simulation box.

With these parameters, the model could predict with high precision the distribution of subtree size (defined as number of branches in

a subtree, starting at branch level 6 from the embryonic rudimentary structure), as well as the subtree persistence (defined as the

fraction of subtrees present at level 6 which are still active at a given level, or generation number). The broad nature of these distri-

butionswas a strong indication of the fact that active tips (and by extension different subtrees) compete neutrally: an ever-diminishing

fraction of subtrees survives and colonizes an ever-expanding part of the fat pad.

Alternative models of mammary branching morphogenesis
To underline the singular predictive nature of the BARW model, one can consider the behavior of different models of branching

morphogenesis, inspired by past proposals in the literature. The following methods sections shows that these alternative models

are inconsistent with various aspects of the data, both qualitatively and quantitatively.

Fractal pattern

Fractal patterns have been previously proposed in the past to explain the branchingmorphogenesis of the lung (Iber andMenshykau,

2013) and human mammary lobule (Honeth et al., 2015), as a solution for the problem of space filling for exponentially increasing tip

numbers. In the BARW framework, the problem is abolished by termination, which regulates the epithelial density. In the fractal

branching concept, branch length and width diminish geometrically as a function of generation, so that an exponentially increasing

number of branches can fit in a finite space. Importantly, there are key lines of evidence arguing against such amodel in themammary

gland (as well as the kidney):

d The branching pattern is not observed to be deterministic (viz. subtrees do not show homogeneity in size) in these organs.

d The branching pattern cannot be explained by purely symmetrically dividing tips (Figures 2B–2D and Figure S1), i.e., the num-

ber of tips does not increase exponentially with generation number.

d Average branch lengths and widths are independent of generation number in the mammary gland (Scheele et al., 2017) (while

they reach a plateau in the mouse kidney).
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Branching and self-avoiding random walks

For kidney branching morphogenesis, a model of branching tips with self-avoiding properties was proposed and compared to the

first branching events in in vitro experiments (Davies et al., 2014). This model avoids crossovers between ducts, thus reproducing

a key aspect of the experimental data. However, a major contrast with the BARW framework is that the number of tips still increases

exponentially with generation number, as there is no termination. Therefore, this model could not explain the data, as the branching

statistics could not be explained by purely symmetrically dividing tips (Figure 2D). Moreover, one finds that a large degree of self-

avoidance (see also Quantification and Statistical Analysis) increase significantly the anisotropy of the branching pattern, to values

which exceed the experimentally measured mammary anisotropy (Figures S5F, S5G, and S5I). This points to the fact that tip anni-

hilation must be a key feature of any viable model of branching morphogenesis. However, alternative sources of regulation/termina-

tion could be conceived, and are analyzed in detail below.

Regulation of branching

Branching, instead of termination, could be enforced in a density-dependent manner. From a mean-field perspective, these two op-

tions are formally identical and, therefore, cannot be distinguished. However, in full spatial simulations, the two hypotheses yield

crucially different outcomes: Although a density-dependent regulation of branching could reproduce the constant average density

of ducts (Figure S4A) as well as the pulse kinetics of invasion, it also yields numerous ductal crossovers (on the order of the number

of branches, thus significantly overestimating the experimentally observed value of Figure 1C by an order of magnitude).

Stochastic termination, independent of spatial cue

Next, the frequencies of tip termination and branching could be encoded intrinsically, independent of any spatial information in the

system. Termination was thus parametrized based on the experimentally measured data (Figure 2D), and implemented as a stochas-

tic process (Scheele et al., 2017). This model failed to predict key qualitative aspects of the data. In particular, since it did not take into

account spatial cues, it failed to reproduce the absence of ductal crossovers. Moreover, because of the absence of self-organizing

properties arising from tip-duct interaction, active tips failed to self-organize into a sharp pulse of active tips at the edge of the tissue

(see Figure S4B for a typical numerical integration), and were instead uniformly dispersed in the fat pad. Because invasion was not

directional anymore, the trees failed to fill the entire fat pad, instead exploring the proximal part before stochastically terminating.

Therefore, this led to a very poor fit to the angle probability distribution ðR2 = 0:24Þ. This strengthened the hypothesis that tip-duct

interactions had to form the regulatory basis of any viable model of mammary branching morphogenesis. Models that keep tip-

duct interaction in one form or another, to ensure that the ductal trees do not display crossovers, were thus subsequently explored,

i.e., models that reproduced, at least qualitatively, some basic aspects of the data.

Branching and self-avoiding random walks with side-branching

A model based on a self-avoiding random walk with side-branching was first considered. This corresponded to introducing two

‘‘classes’’ of tips and branches: the main branches/tips were the same as above, and performed a branching and self-avoiding

random walk, maintaining a sufficient spacing between them to avoid termination. However, a further assumption was of a constant

probability rs to create side-branches at each branching event, i.e., tips that were unable to branch again, and terminated after a short

typical length, regardless of the external environment. This was equivalent to termination being implemented ‘‘intrinsically’’ upon

asymmetric branching, in opposition to the BARW framework above, where termination was considered as an extrinsic event based

on local spatial rules and independent of the branching events themselves. Because of the self-avoiding nature of the dynamics,

crossovers were avoided and, because of intrinsic termination, for rs = 1, the number of tips did not increase exponentially, and

were thus intrinsically balanced. The possibility of mammary morphogenesis occurring sequentially was thus explored, in the spirit

of proposals such as in (Huebner and Ewald, 2014): An early phase of largely symmetric branching served to increase the net number

of tips, as observed experimentally, followed by a phase of purely asymmetric side-branching, with main branches avoiding each

other. For robustness, two options were tested for the average threshold generation number to move to a phase of side-branching:

generation n= 5 (Figure S3G and blue curves in Figures S3I–S3K) and n= 6 (Figure S3H and orange curves in Figures S3I–S3K), and

averaged in each case over 1000 full stochastic simulations. The radius of repulsion Ra = Lx=20 and repulsion strength fr = 0:6 had to

be taken large, as otherwise ductal crossovers occurred with high probability. With these parameters, one could obtain a satisfactory

fit to the subtree persistence (Figure S3K). Importantly however, this model missed key aspects of the experimental data:

d At these levels of repulsion (which were necessary to avoid crossovers, as mentioned above), the simulated ductal trees were

highly directional, with an angle distribution that fitted very poorly with the data (Figure S3I, R2 = � 4:1 andR2 = � 2:8 resp.), as

it overestimated drastically the degree of directionality (see simulation snapshots).

d Moreover, because of the absence of strong competition between subtrees, the predicted subtree distribution fitted poorly with

the experimental data (Figure S3J, R2 = 0:4 and R2 = 0:7, respectively), as it underestimated drastically the subtree size hetero-

geneity. Calculating R2
log provided an even worse correlation, as the tails of the model and data distribution diverged strongly.

Branching and annihilating random walks with external guidance

Next, a key alternative to the BARW model was considered, which involved the guidance of tips by external chemical gradients/cy-

tokines, to explore the fundamental debate on whether morphogenesis proceeds via self-organizing features, or via decoding posi-

tional information. Specifically, the BARW framework defined above was supplemented by an additional external guidance, i.e., a

biased instead of isotropic random walk. At each step of a tip i in a direction pi, an external field was imposed in the distal direction
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gx x, with gx > 0 (and the updated unit vector pi in the presence of this field was calculated). Thus, increasing values of gx lead tomore

and more directional migration toward the distal direction. The effect of the perturbation became noticeable when gx was of a com-

parable order of magnitude to the rotational diffusivity of the tips (Figures S3A–S3C). Various values of gx = 0:05; 0:1; 0:2 were tested

(respectively blue, orange and yellow lines in Figures S3D–S3F) and averaged in each case over 1000 full stochastic simulations.

Importantly, this model also missed key aspects of the data:

d The main departure between simulation and experiment was, predictably, on the anisotropy of the branching pattern. For each

value of gx, as for the BARW simulations in themain text, the probability distribution of having a branch at an angle q˛½0;p� from
the horizontal xwas computed. Crucially, this systematically overestimated the anisotropy, with increasing values of gx causing

an increasing anisotropy, and providing a very poor fit for the data (Figure S3D, R2 = � 2:8 for the best fitting case of gx = 0:05,

thus a much worse fit than the control case of gx = 0).

d Moreover, the predicted subtree size distribution (Figure S3E) and persistence (Figure S3F) fitted increasingly poorly the exper-

imental data (respectively R2 = 0:82 to R2 = 0:56 and R2 = 0:93 to R2 = 0:83, for gx = 0:05 and gx = 0:2). Calculating R2
log indicated

an even worse fit, as the tails of model and data distribution diverged strongly.

Branching and annihilating random walks with side-branching

Next, the possibility of whether the data could accommodate a BARW framework coupled with significant side-branching was

explored (defined as above as the generation with probability rs of tips that were unable to undergo further branching). Various values

of rs were explored (all of the other parameters being the same as the default simulations from themain text) and in each case 1000 full

stochastic simulations were averaged (Figures S3L–S3N). Importantly however, large values of rs again missed key aspects of the

data. In particular, increasing values of rs caused a higher and higher value of the subtree persistence, as the perturbation decreased

inter-tip competition. Therefore, the simulations with side-branching systematically overestimated subtree persistence (Figure S3O).

At the same time, they also systematically underestimated subtree size heterogeneity (Figure S3P). Thus, including medium to large

values of rs (rs = 0:2 in blue, rs = 0:5 in orange and rs = 0:75 in yellow) systematically worsened the fit of themodel to the data (R2 = 0:91

for persistence and R2 = 0:85 for size distribution for rs = 0:5), allowing to rule out the possibility of a large fraction of side-branching

during 3-8 weeks pubertal dynamics, although side-branching could play a more dominant role later on after the fat pad has been

filled (Sternlicht, 2006).

Branching and annihilating random walks with large side-branching and repulsion

Finally, the question of whether a large amount of ‘‘secondary phase’’ side-branching could still accommodate the data with added

repulsion was explored (again, in the presence of annihilation, as in the control simulation). The same two-phasemodel as above was

implemented (symmetric branching followed by a phase of side-branching with probability rs after an average generation of n= 6),

with repulsion. A repulsion radius of Ra = Lx=60 and a repulsion strength fr = 0:6 were used (although these values were found to

be less crucial as before, as crossover here was avoided in any case by the presence of annihilation). Again, to explore the phase

diagram, various values of rs = 0:75, 0:9, 1 were tested (respectively blue, orange and yellow lines in Figure S3R) and 1000 full sto-

chastic simulations were averaged in each case (see Figure S3Q for an example of a typical final configuration for rs = 0:9). Although

thismodel reproduced rather well the orientation of the tree, as well as its constant spatial density and absence of crossovers, the key

issue was again the low competition between subtrees, which caused an overestimate of subtree persistence, and an underestimate

of the heterogeneity of the subtree size distribution (Figure S3R, R2 = 0:82 for rs = 0:75 to R2 = 0:82 for rs = 0:9 and R2 = 0:36 for rs = 1).

Once again, calculating R2
log indicated an even worse fit, as the tails of model and data distribution diverged strongly.

Theoretical analysis of bead implantation
There are three possibilities to theoretically simulate the effect of the beads with respect to the BARW framework: the beads could

enhance locally termination (with the same termination radius for beads as ducts for the sake of simplicity); the beads could inhibit

locally termination (so that, within the same radius, no termination could occur); or the beads could enhance branching (so that, within

a critical radius, the branching rate was enhanced by a given factor hb, with hb = 2 in Figure 5C, corresponding to the observed in-

crease in branch rate, and hb = 3 in Figure S5L for comparison). In simulations, four clusters of 15 beads were randomly positioned, to

mimic the experimental configuration. The probability of bead-duct crossover was computed in all cases, to compare to control. As

shown in Figures S5L and S5O, in the control case of beads devoid of any effect, the probability for ductal crossover was slightly

below 40%, whereas, by construction, the case of beads inducing termination there was a zero-probability for bead-duct crossover.

Next, simulations were used to assess the influence of ectopic delivery of FGF10. Glands with FGF10 beads were compared with

numerical simulations locally enhancing branching rate by a factor hb = 2 (Figure 5C), which reproduced well the enhanced branch

density locally with minimal directionality.

Numerical simulations in 3D
To address the dynamics of the BARW in 3D, themodel was parametrized in spherical coordinates ðr; q;fÞ, with the initial condition of

a single active tip positioned at coordinate r = 0 with orientation q=p=2 and f= 0. Tips branch at a rate rb and terminate determin-

istically if they enter into a radius of Ra of another duct. Upon bifurcation of a tip i, two offspring tips are produced, at an angle ai from

their ancestor duct. Based on previously published data on kidney branching, ai was chosen randomly from a uniform interval
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½ao � da;ao + da�, with ao = 50+ and da=a0 = 1=3 (Short et al., 2014). The results depended only very weakly on these parameters.

Moreover, the two offspring tips adopted experimentally a diametrically opposite position, and the angle b˛½0; 2p� for the plane of

this bifurcation was thus chosen randomly (see Figure S6A for a schematic). The angles (q1, f1) of offspring 1 could thus be calculated

from the angles (q, f) by solving the equations:�
cosq1sinf1cosqsinf+ sinq1sinf1sinqsinf+ cosf1cosf= cosai

�cosq1sinf1sinq+ sinq1sinf1cosq= sinbsinai
(15)
and the angles (q2, f ) of offspring 2 could be calculated by the s
2 ame system of Equations (15) by substituting b/b+p. This guar-

anteed that there was both an angle of ai between the directions of ancestor and offsprings, as well as that the two offsprings went in

diametrically opposite directions relative to this angle.

Furthermore, as detailed in the main text, one must specify the anisotropy of kidney expansion in the simulations (Figures S6B and

S6C), as this does not appear to arise from the redirection or annihilation of tips going along the short axis. Indeed, if that were the

case, onewould see, by analogy to themammary gland expansion, that only tips along the long axis are proliferative. In contrast, both

proliferation and nephrogenesis in kidney were found to be organized in continuous rims all across the surface of the developing or-

gan (Costantini and Kopan, 2010). Anisotropy did not seem to be driven either by a much shorter branch length along the short axis,

as the average branch lengths depended very little on the direction of growth (Figure S6E), whereas the branch length distributionwas

consistently well-fitted by a single exponential with a threshold (which was fitted from the experimental value, see theory versus

experimental distributions on Figure S6F). Therefore, the simplest model of anisotropy was to assume that the timescale of the

branching and elongation process depended on the angles ðq;fÞ of a given branch relative to the center of mass, being rescaled

by a factor Fðq;fÞ. Lz denotes the longest axis ðq= 0Þ, Lx the shortest axis ðq=p=2;f= 0Þ, and Ly the intermediate axis

ðq=p=2;f=p=2Þ, which were measured experimentally as Lx=Lz = 0:5 and Ly=Lz = 0:4. Kidneys were thus parametrized as triaxial el-

lipsoids using the formula:

Fðq;fÞ= Lz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

qsin2
f

L2
x

+
sin2

qcos2f

L2
y

+
cos2q

L2
z

vuut (16)

Finally, although the global distribution of branch lengths in kidney was well-fitted by a single exponential (Figures S6D and S6F),

indicative of a stochastic branching with constant rate rb, it had been shown that the first bifurcations were more regular and stereo-

typic (Sampogna et al., 2015; Short et al., 2014), intervening dominantly in a single plane and along the future long axis of the kidney.

To make accurate experimental predictions, a ‘‘seed’’ kidney was thus grown for n= 5 generations of bifurcations, at a deterministic

branch length of 1=rb, before using the stochastic branching dynamics described above. (Annihilation was still allowed in the early

phase, with the same annihilation radius, for the sake of simplicity and consistency.)

Key parameters for the default kidney simulations
Numerical simulations were performed in three-dimensions. At each time step (with t = 1 again used as the unit time), tips moved

forward by a length Vt = 1 (again used as the unit length), along a polarity vector pi, or angle q, which diffused by a random angle

of amplitude dq=p=10 (as in the case of mammary gland simulations). The branching rate was set to rb = 0:2 and a best-fit value

for Figure 6D was found for an annihilation radius of Ra = 1:3 in simulation length units (so that the only key parameter controlling

the kidney morphology was R0
a = rbRa = 0:26). The bias toward ductal termination at the largest generation numbers was partially

an artifact of the analysis, as these represented tips at the periphery of the kidney (Figure 6E) that remained proliferatively active

but, without ‘‘progeny’’ yet, were counted as ‘‘terminated.’’

Mapping between simulated and real embryonic time in kidney
To understand quantitatively the full developmental time course of embryonic kidney formation (as assayed experimentally by (Sam-

pogna et al., 2015), the results of which were re-analyzed here), a correspondence between real and simulated time must be pro-

vided. The speed of kidney branching morphogenesis (defined as the characteristic time to form a branch) was found to decay in

time (Sampogna et al., 2015) during embryogenesis (even though the average branch size decays slowly in time). Simulated time

thus depended non-linearly on real embryonic time. For the sake of simplicity, constant time-invariant properties were considered

in the simulations, and simulated time was then linked to embryonic time by fitting the average number of branches at that develop-

mental time (from E11 to E19, see Figure S6G). All of the results presented in Figures 7A, 7C, and 7D were thus obtained using the

simulated embryonic time correspondence shown on Figure S6G.

Modeling of Vitamin A deficient kidney
The analyses described above were applied to understand perturbations to normal kidney development. In particular, a dataset from

the segmentation of the E15 mouse kidney on animals maintained on a low vitamin A diet (Sampogna et al., 2015) was re-analyzed.

Interestingly, although the branching rate and total number of branchesweremaintained in this condition, kidney becamemuchmore

heterogeneous with, in particular, an increase of the maximal branch generation number attained at E15 (some 3 generations more
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than wild-type, P< 0:05), and thus a correspondingly decreased number of mid-generation branches. It was thus tested whether the

samemodel could be applied to understand this new phenotype. Given the sensitivity analysis developed above, one needed to first

explore whether a change of anisotropy in kidney shape could explain this behavior, but no significant changes was found in the kid-

ney aspect ratio compared to wild-type (P> 0:1 both for Lx=Lz and Ly=Lz). However, a key geometric change was that Vitamin A defi-

cient kidneys were much smaller, behaving as a spatially scaled down version of their wild-type counterparts (occupying on average

35% of normal wild-type volume, P< 0:05). Therefore, as a consequence, the density of tips at the outer surface rim was found to be

nearly twice as large in the Vitamin A deficient kidneys as wild-type. This meant that, although the branching rate was identical, the

elongation rate of tips had to be reduced in Vitamin A deficient kidneys, leading to the hypothesis that this could explain, by itself, the

enhanced heterogeneity, by increasing tip-tip competition. Indeed, for lower characteristic branch lengths, crowding-induced termi-

nations were expected to arise earlier. It was thus checked whether this single geometric change in elongation rate of kidney could

reproduce quantitatively the phenotypic differences between the wild-type and Vitamin deficient kidney. The elongation rate was

thus decreased by a factor two in simulations, and keeping all other parameters constant, which lead to the correct reduction in kid-

ney volume at E15 (Figures S7H and S7I for comparison of wild-type and mutant simulations). The same methods as before were

used to computed the predicted average number of branches per generation, for the same total number of branches. Importantly,

the simulations for Vitamin A deficient kidneys displayed on average two more generations than simulations for wild-type kidneys

(Figure S7J), closely mirroring the data. Moreover, the model provided an overall excellent prediction (R2 = 0:98, S= 6) for the Vitamin

deficient data. This validated the model of crowding-induced termination by showing that one can predict kidney structure from sim-

ple geometric properties such as average branch length. Interestingly, in the Vitamin A deficient kidneys, nephrogenesis was also

impaired (Sampogna et al., 2015). This displayed an additional layer of complexity compared to the proposed framework, as the

simplifying assumption was made in the main text to equate inactive tips with tips fusing to glomeruli to initiate nephron formation.

This hinted, in particular, to the fact that crowding tip termination could be a distinct, not-fully overlapping property of nephron initi-

ation, something that would need to be tested by combining large-scale reconstructions with EdU assays. Similarly, the above an-

alyses neglected the subsequent re-organization, dilation and alignment of kidney ducts.

BARW from reaction diffusion equations
The framework of reaction-diffusion systems, which have been widely and successfully studied since Turing’s seminal work to un-

derstand collective biological phenomena, was used to provide clues on the emergence of BARW. It was assumed, following Turing,

that a diffusible activator A both self-activated and activated another diffusible molecule I. This second molecule I was an inhibitor,

negatively regulating A as well as itself. Under general conditions on the diffusion coefficients, this system was shown to generate

arrested phase separation into complex motifs with a well-defined length scale (dots on a hexagonal lattice, stripes, reconnected

labyrinths, etc.). This formalism was extended to show that the inclusion of a third molecular component, functioning as a substrate

for the first two, allowed for the formation of branched structures (Meinhardt, 1982). Guo and colleague have revisited this paradigm

(Guo et al., 2014) using the following four-species system, including an activator A, an inhibitor I, differentiated inactive cells Y , and a

substrate S: 8>>>>>>>><
>>>>>>>>:

vtA= c
A2S

I
� mA+DAV

2A+ rAY

vt I= cA2S� nI� DIV
2I+ rIY

vtS= c0 � gS� eYS+DSV
2S

vtY =dA� eY +
Y

1+ fY2

(17)
where c, m, r , n, r , c0, g, e, d, e and f are coefficients of interactio
A I ns, and DA, DI and DS are coefficients of diffusions (for details see

(Guo et al., 2014)). Numerical analysis showed that this model is able to reproduce the different modes of branching morphogenesis

observed in vivo. In particular, increasing the parameter e, which quantified the consumption of the substrate by the epithelium,

switched from a mode of side-branching to a mode of exclusive tip-splitting morphogenesis. Interestingly, performing numerical in-

tegrations of these equations for longer times showed that the branching pattern also displayed an annihilating property (Figure S7N).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantifications
Whole-glands were manually reconstructed and using custom-made .NET software, the length and width of all the ducts, the coor-

dinates of the branch points, the distance of the TEBs to the closest neighboring duct, and the fraction of EdU-labeling in the ducts

and TEBs were scored. Statistical parameters including the exact value of n, precision measures (mean ± SEM or SD) are reported in

the Figures or the Figure Legends. All other analyses and simulations were made using custom-made Python software. No random-

ization was used. For the quantifications of Figure 1 on fat pad/branch length and crossovers (i.e., ratio between ductal crossovers

and the total number of branches in a gland), the analyses were performed on n = 14 glands (n = 7 fourth glands, n = 7 fifth glands) of
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comparable size from 7 different 8 week oldmice (full dataset). For the quantifications of Figure 2 on subtree size and persistence, the

analyses were performed on n = 12 glands of comparable size from 6 different 8 week old mice (2 glands from one mice were

excluded from this analysis, in order not to artificially enhance subtree heterogeneity, since their fat pad size was more than two

SD away from the average size). For the quantifications of Figure 3D, the analyses were performed on n = 4 glands (n = 2 third glands

and n = 2 fourth glands) of comparable size from two different 5 week old mice after a 4 hour Edu pulse. For the quantifications of

Figures 4A and 4B on density fluctuations, the analyses were performed on n = 14 glands from 7 different 8 week old mice (full data-

set). For the quantifications of Figures 4C and 4D on branch anisotropy, the analyses were performed in all glands in which an antero-

posterior axis could be defined (n = 7 glands from 5 different 8 week old mice, with n = 5 fourth glands, n = 2 fifth glands), and

branches inside a rectangular box around this axis were quantified (dashed gray line on Figure 4C), which allowed us to avoid the

data becoming corrupted by the shape of the gland. For the quantifications of Figures S5O and S5P, the analyses were performed

on n = 4mammary glands for TGF-beta beads from 2 different mice, n = 3 glands from 2 different mice for the control beads, and n = 3

glands from 2 different mice for the FGF10 beads. For the quantifications of Figures 7A and 7B, the analyses were performed in n = 3

kidneys from 3 different embryos at each time point. For the quantifications of Figures 7C and 7D, the analyses were performed in

n = 3 kidneys from 3 different embryos at each time point, except at E18-19 (n = 2 kidneys from 2 different embryos). It should be

noted that for the latest time point of kidney development, the data allowed for the counting of nephrons and branches (Figures

7A and 7B), but could not always be used to reliably reconstruct connectivity, so that E16-17 and E18-E19 kidneys were grouped

for enhanced statistics (resp. n = 3 and n = 2 kidneys from 3 and 2 different embryos). For Figure 7E, density fluctuations in n = 3

kidneys from 3 different E17-E19 embryos were averaged. For Figure 7J, n = 4 kidneys from 2 different E15 embryos were averaged.

Goodness-of-fit statistics
To challenge quantitatively the goodness of the fits in the main text, as well as its explanatory power, the model predictions were

challenged by calculating in both cases the coefficient of determination R2, the simplest indicator of the goodness of a fit. In addi-

tion, the standard error of the fit, S, was calculated, an absolute measure of the residuals of the fit, which has been shown to be

more adapted for non-linear fitting procedures. For a good fit, R2 should be as close to 1 as possible, whereas S should be as

close to 0 as possible. Values of R2 were also calculated for completeness by taking first the logarithm of the data and predictions

(which was denoted as R2
log in the main text), given the power laws seen in several quantities of the dataset. This measure was

complementary, as it gave comparatively more weight to the agreement between theory and experiments for small parameter

values. Importantly, it was checked that one obtained satisfactory goodness of fits measurements in each case. Specifically,

for the definition used in the main text, defining n as the number of the points being fitted, y = ð1=nÞPn
i y

i
obs as the average of

the observable, Stot =
Pn

i ðyiobs � yÞ2, and Sres =
Pn

i ðyiobs � yimodelÞ2, the coefficient of determination was defined as

R2 = 1� ðSres=StotÞ, while the standard error of the fit was given by S=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðSres=nÞ

p
. As described below, for the shaded areas of

Figures 2E and 2F, numerical integrations were performed for the experimentally observed average value of the branch lengths,

as well as for the values ± one standard deviation. For all three values of resulting rb estimate, at least 2000 numerical simulations

were performed and curves were computed for each case. The shaded area thus represented the sensitivity of the model predic-

tion with respect to one standard deviation variation of the key parameter rb. Moreover, to build the error bars shown in Figures 2E,

2F, 7C, and 7D for the experimental values of the cumulative subtree size distribution and subtree persistence, given the small

number of subtrees in each mammary gland, a bootstrapping method was used. This involved calculating the cumulative distri-

bution function for a large number of artificial datasets, which were samples with replacement of the original dataset (i.e., sizes or

maximal generation, respectively, of subtrees), and calculating error bars, defined here as confidence intervals of one standard

deviation, from the resulting cumulative distributions of each artificial dataset. For the shaded areas of Figures 7A and 7B, at least

1000 numerical simulations were performed using the default parameters (see above) and the branch number per generation and

inactive versus total tip number were calculated in each case. Averages and 95 % confidence intervals were computed from these

simulations, which therefore expressed the stochastic fluctuations of the model for a given and constant value of the annihilation

radius Ra.

Statistics for bead experiments
To quantify the effect of beads on the branching pattern, as well as its locality, the average branchpoint-to-branchpoint distance was

measured in four settings: in regions close and far from the beads (defined as regions which are closer/further than 500mm to a bead),

both for control beads and soaked beads. Importantly, when comparing glands with control beads versus glands with FGF10 beads

(n= 3 glands for FGF10 beads, n= 3 glands for control beads), no statistically significant difference was found between the branch

length far from control beads, in proximity to control beads, or far from FGF10 beads (adjusted P> 0:99 in all cases, from a Kruskal-

Wallis test with multiple comparisons and correction). However, the branches close to FGF10 beads were statistically much shorter

(approximately twice as short, P< 0:001 from a Kruskal-Wallis test, in all comparisons with the three controls).

Sensitivity analysis on mammary gland simulations
The overall robustness of your model with respect with parameter variations was explored, showing, in particular, that its predictions

were insensitive to details of the simulation scheme used.
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Effect of the branching rate

First, the effect of variations in the branch length, i.e., changes in the branching rate rb, were shown in the main text as confidence

intervals. The experimentally measured standard deviation of the mean branch length among different mammary glands was used,

and thus branchingmorphogenesis for rb = 0:085 and rb = 0:12 was simulated, to build confidence intervals of one standard deviation

with respect to the branching rate (shaded area in Figures 2D–2F). Lowering (respectively increasing) the branching rate increased

(respectively decreased) the average number of branches in a mammary gland, and thus shifted significantly both the subtree size

distribution and persistence (Figures 2E and 2F, shaded area). Interestingly, it was found to have relatively little impact on the conver-

gence toward balance between termination and branching (Figure 2D). Moreover, lowering (respectively increasing) the branching

rate modified the exponent of the giant number fluctuations (Figure S5C and main text): Larger values of the branching rate tiled

space more effectively, so that the exponent was reduced, indicative of lower fluctuations. Conversely, smaller values of the branch-

ing rate approached the critical point, enhancing density fluctuations.

Effect of the annihilation radius

Second, the sensitivity of the results with respect to the value of the annihilation radius was investigated. This parameter was not

expected to be crucial in two-dimensions for persistent random walks, as the probability for two lines to intersect is unity. Neverthe-

less, to confirm this intuition quantitatively, numerical simulations were run for different values of the annihilation radius Ra (smaller

value of Ra = 1:5 shown in Figure S2D and larger value of Ra = 3:75 shown in Figure S2E). Lowering the annihilation radius slightly

delayed the convergence toward balance between tip branching and termination (Figure S2F), but this effect was found to be

very small, even for more than two-fold variations in the annihilation radius Ra. Similarly, the cumulative subtree size probability

was largely unaffected by large differences in Ra (Figure S2G).

Effect of the persistence length

Third, the sensitivity of the results was investigated with respect to the value of the persistence length for the random walk. As stated

above, a control value of dq=p=10 was used, based on previous measurements of duct ‘‘tortuosity,’’ i.e., the average real path length

between consecutive duct branch points, Ld, was 6% larger than its straight branchpoint-to-branchpoint value ld (Paine et al., 2016).

For small path fluctuations, hðxÞ, with respect to the branchpoint-to-branchpoint axis x, ðLd � ldÞ=ldzh0ðxÞ2=2zdq2=2; hence the value

chosen. Again, numerical simulationswere run for different values of the persistence length, by varying themagnitude of the angle vari-

ation at each step of the randomwalk, dq. Both the limit of an infinity persistent walk (dq= 0, Figure S2H), and a slowly persistent random

walk, with an angle dq doubled compared to its reference value (dq= 2dqref , Figure S2I), were considered. Although the microscopic

morphology of the simulated glands was found, as expected, slightly different, these parameter changes did not significantly affect

either the evolution of the tip termination probability as a function of generation (Figure S2J), nor the cumulative subtree size probability

(Figure S2K). This argued for the robustness of results with respect to even large perturbations of this parameter.

Effect of probabilistic annihilation

Fourth, although the mammary gland reconstructions indicate that the crossover between ducts was a rare event, it was not non-

existent, as assumed so far in the simulations. The simulations were thus modified to allow for the possibility of crossovers, and im-

plemented probabilistic annihilation:

A+ I/2I; at rate ra (18)
if an active tip A entered the vicinity of a duct, i.e., within the annihi
lation radius, Ra. The reference simulation was thus simply the limit

of ra = 1. In Figure S2L, ra = 0:2 andRa = 5 were chosen (i.e., a larger annihilation radius than the reference case, to compensate for the

less likely annihilation, and to obtain simulated glands of comparable density). Although simulations now presented a low but non-

zero fractions of crossovers (Figure S2L), the convergence toward a balance between termination and branching was still observed

(Figure S2N), with similar kinetics. Interestingly, the functional shape of the cumulative subtree size distribution was characterized by

decreased heterogeneity, with less very large subtrees compared to the reference distribution (Figure S2O). This resembled the dis-

tribution previously found using a mean-field limit of this problem, i.e., exponential tails, arising from the stochastic choices of equi-

potent tips in a critical Galton-Watson birth-death type process (Scheele et al., 2017). This was not surprising, as in the limit of very

large annihilation radii, the spatial advantage for a tip to be in a crowded region becomes vanishingly small, converging toward the

mean-field solution.

Effect of the branching angle distribution

Fifth, the importance of the branching angle distribution in dictating the final morphology of the mammary gland was investigated. In

the reference simulations, the input for the branching angle distribution was its experimentally observed counterpart. Indeed, it was

found that the branching angles of the two offsprings relative to the direction of the ancestor branch did not show any significant

correlation, although the relative angle between the two off-springs were above aminimumbound of roughly p=16. In the simulations,

one can thus stochastically and independently choose both from a Poisson distribution of parameter p=6 (together with a minimal

bound of p=16). However, to also assess whether these choices of the branch angle distribution modified significantly results, sim-

ulations were modified by considering the branching angle between ancestor and offspring to be a given constant of a= 50 degrees.

This yielded a slightly more ordered gland morphology (Figure S2M). Importantly, however, the convergence toward a balance be-

tween tip termination and branching (Figure S2N), as well as the cumulative distribution of subtree sizes, were only very weakly

affected (Figure S2O).
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Effect of additional self-avoidance

Finally, it was assessed whether and how the results would be modified if tips had additional self-avoiding properties (Sternlicht,

2006; Davies et al., 2014), in addition to their previously-described branching and annihilating properties. Self-avoidance was

modeled microscopically in the simplest local way, by assuming that a particle, located at a position ri, could sense an average den-

sity vector pr
i arising from ducts and tips in a repulsion radius Rr (sketched on Figure S5E) such that,

pr
i =

P
j��ri � rj
�� <Rr

ðri � rjÞ��P j��ri � rj
�� <Rr

ðri � rjÞ
�� (19)
pr thus being a unit vector weighting equally every particle in a rad
i ius of Rr . At each random step of the random walk with l = 1 in the

direction pi (as described above), the particle performed an additional displacement of�frp
r
i (with its polarity vector pi being updated

accordingly). Thus, positive values of fr corresponded to self-avoiding random walks (i.e., tips moving away from denser regions),

while negative values of fr corresponded to self-attracting random walks. fr represented the strength of the self-avoidance bias

on the random walk. Moderate (fr = 0:2, Figures S5E–S5J) biases were investigated to understand whether this affected the results.

Boundaries could also be represented formally as ducts (with the same particle density), and included in Equation 19, if onewanted to

assume that the boundaries of the mammary fat pad repel active tips (fr = 0:2, Figure S5G). One must have Rr >Ra in the simulations,

i.e., a larger self-avoidance radius than the self-annihilation radius, otherwise tips terminated before they got a chance to sense their

neighbors, and adapted their trajectories accordingly. In the simulations of Figures S5F–S5J, Rr = 2Ra was used. Simulated glands

with higher degrees of repulsion were found to grow to larger subtree sizes and density, as expected from their repulsive properties,

which allowed them to explore spacemore efficiently before terminating. However, the kinetics of convergence toward balance of tip

termination and branching were only very slightly delayed (one generation, Figure S5H). This was found to be in large part because, in

two-dimensions, particles still annihilated at comparable rates given the high probability of crossings. However, one quantitative

change arising from repulsion was the enhanced emergent anisotropy of the branching random walk. To quantify this, the same

quantifications of branch angle relative to the horizontal were performed, as in the reference simulation (Figure 4C), and the reference

angle distribution was compared with the distributions in the different repulsive conditions. For small fr , it was found that the bias

toward distal orientations (angles close to 0) increased with increasing repulsion fr . Moreover, including the repulsive effect of the

boundary increased the bias even further (Figure 4D). This was expected, as boundaries now ‘‘guided’’ the tips in the proximal-distal

direction via repulsion. Interestingly, this thus predicted anisotropies which were larger than the average experimentally observed

value, arguing that this should not be a key feature of the data. Moreover, the reference simulation already achieved a relatively large

value of anisotropy in the absence of any repulsion. This indicated that self-avoidance reinforced the emergent effects that was

observed from branching and annihilating random walks, but were not necessary qualitatively and quantitatively to explain them.

Of note, the dataset did present some inter-gland heterogeneity in the branch angle distribution anisotropy, with some glands dis-

playing much more directional invasion than others. This could potentially be explained by various strengths of the self-avoidance

properties in different glands. Finally, self-repulsion was found to decrease density fluctuations (Figures S5F and S5G), which man-

ifested quantitatively by a reduced exponent of giant number fluctuations (Figure S5J), as expected from an ordering repulsive

mechanism.

Kinetics of mammary gland invasion
As shown on Figure 3, although the bulk of proliferative cells were found to be localized in the invading front, one could also observe a

fraction of tips which still contained a few proliferative cells, and were localized further away from the invasion front. However, these

tipswere always found small and less proliferative than at the front, lacking the characteristic ‘‘balloon shape’’ of front tips (Figure S4I).

These small ‘‘half-active’’ tips were typically localized at the edge of the fat pad. One could thus conjecture that they represent

formerly active tips during their transition to termination, and they were added to the description (which was formally equivalent

to describing the localization of newly formed nephrons in Kidney, as shown in Figure 6D and discussed below) by writing an addi-

tional equation for their concentration h as: 8<
:

vta= v2xa+ rað1� a� i � hÞ
vth= a+ raða+ i + hÞ � rhh
vt i = rhh

(20)
where rh described the rate of transition between half-active and i
nactive particles. Within this framework, h adopted a spatial shape

similar to the one of active tips (as its equation was slave to a as soon as h � i, which was typically the case). Although rh could be fit

from the spatial distribution of half-active tips, its inclusion over-complicated the analysis so that, in Figure 3D, only fully active tips

were considered, i.e., tips which consisted of over 50% of proliferative cells (as assessed by EdU measurement). Importantly, even

with this conservative definition of active tips, one still recapitulated a key prediction of the model regarding the asymmetry of the
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pulse: the back decay was much slower than the front decay. Moreover, although the model slightly underestimated the density of

ducts and active tips (Figure 3D), it was found to still provide a very good prediction for the detailed shape of both, with exponential

decays on both sides of the pulse. For the simulations underlying the theoretical curves of Figure 3D, the relative sizes of the fat pad

were fitted bymeasuring it once again for the n= 4 glands used in the EdU experiment, as these were larger than the previous dataset

(by around 60%), all other parameters being kept constant. Again, however, this did not change the conclusion nor the simulated

profile shapes of the glands.

Giant density fluctuations in kidney
In order to assess the scale of giant number fluctuations in the experimental data, without the measure becoming corrupted by

boundary effects, only detailed reconstructions of E17 to E19 kidneys were examined (n= 3, average shown on Figure 7E; results

for different time points were consistent, as indicated by the small error bars). The statistical analysis was then performed in a rect-

angular three-dimensional box around the center of mass of each kidney, thereby excluding boundary effects. Results consistently

showed robust power law dependences with exponents larger than 0:5, indicative of giant number fluctuations. The same analysis

was performed for the density fluctuations of the simulated kidney, on E19-equivalent trees, again avoiding the edges of growth to

prevent boundary effects from corrupting the data.

Sensitivity analysis on kidney simulations
A sensitivity analysis of 3DBARWwas performed, to understand how variations in the parameters of themodel affected quantitatively

and qualitatively the observed results for kidney morphogenesis.

Effect of the annihilation radius

In contrast to the case of two-dimensional BARWs, the value of the annihilation radius Ra was found to play a crucial role in three

dimensions. This was because vanishingly small radii Ra gave rise to vanishingly few crossovers/terminations in three dimensions.

Thus, the radius Ra became a key parameter, and had to be fitted with respect to the kidney data in order to be able to make quan-

titative predictions. First, all annihilation events were suppressed ðRa = 0Þ to check whether the heterogeneity of the branch level dis-

tribution could stem from purely stochastic branching and size anisotropy. Importantly, this provided a very poor fit to the data (first

panel, Figure S6J), showing the importance of annihilation for heterogeneity. Next, the same three-dimensional simulation as in the

control were performed for large ðRa = 0:5Rref
a Þ or small ðRa = 2Rref

a Þ values of the annihilation radius (respectively center left and center

right on Figure S6I, to be compared to the left panel for control). Larger radii enhanced the heterogeneity of the simulated kidneys, as

was seen by a broadening of the segment distributions as a function of generation and at different developmental timings (second

panel on Figure S6J). This translated into larger nephron to active tip ratio (Figure S6K), largely overestimating the experimentally

observed values. Conversely, smaller radii were found to decrease the heterogeneity of the simulated kidneys (third panel on Fig-

ure S6J), and underestimate the nephron to active tip ratio (Figure S6K). This confirmed the importance of this parameter, and argued

that it could be estimated rather precisely.

Effect of additional self-avoidance

Although the model performed well to reproduce key features of the kidney structure, topology and nephrogenesis pattern, as is

obvious qualitatively from the three-dimensional reconstructions, and quantitatively from the giant density computation of Figure 7E,

it overestimated the spatial density fluctuations, so that experimental reconstructions were consistently more ordered than their

simulated counterpart. As mentioned above, it had been proposed that kidney has self-avoiding properties (Davies et al., 2014),

in a Bmp7-dependent manner, as inhibition of Bmp7 function in cultured kidneys causes collisions between tips and ducts. However,

another interpretation of this data, could be that collisions are avoided instead by termination, rather than repulsion. Notably, evi-

dence in favor of this was obtained from culture studies of two kidney buds in close proximity (reproduced in Figure S6M from (Davies

et al., 2014)). Indeed, when two trees growing in a similar geometry to the experiments were simulated, both for the case of pure

termination without repulsion (Figure S6N) and pure repulsion without termination (Figure S6O), the simulations with termination

were found to reproduce better the presence of numerous (terminated) tips in the contact zone between the two kidneys, whereas

the pure repulsion simulations displayed an absence of tips at the contact zone, as they avoided the zone by adoption of diverging

flow motion. However, to expand our analysis, it was asked whether, when applied to the in vivo kidney data, a degree of self-avoid-

ance coupled to the BARW framework would improve the theoretical predictions. As the avoidance strength fr was increased, the

number of annihilation events was found to diminish, and the branching topology thus becamemore deterministic, and characterized

bymore peaked distributions. However, this could be counteracted by increasing in concert the annihilation radiusRa. In particular, it

was found that for an annihilation radius of Ra = 2Rref
a and fr = 0:3 together with a repulsion radius of Rr = 6, all other parameters being

maintained the same (see Figure S6I for a typical simulation output showing higher order than control simulations), good fits for the

nephron versus tip number as a function of time could still be obtained (Figure S6L), as well as for the number of branches per gen-

eration distributions at all time points (Figure S6J, bottom). Moreover, in these simulations, the spatial variations in density weremark-

edly reduced (Figure 6E), so that the exponent of the giant number fluctuations observed experimentally could be predicted with

much better accuracy compared to the non-repulsive case.

Effect of the growth anisotropy

Next, the contribution of the anisotropy in promoting subtree heterogeneity in the kidney was assessed. Numerical simulations

were thus performed with the same set of parameters as wild-type, only in isotropic growth conditions (Lx = Ly = Lz, Figure S7A).
e13 Cell 171, 242–255.e1–e14, September 21, 2017



As expected, the key phenomenology of a self-organized pulse of active tips at the edges of the kidney was not affected by changes

in isotropic conditions (Figure S7A). Moreover, similar kinetics and scaling laws in the number of nephrons versus tips as a function of

time were observed. However, a key difference was observed in the number of branches per generation as a function of time, with a

marked reduction in the width of the distribution, as expected from reducing the anisotropy-induced growth advantage of subtrees in

favorable directions (Figure S7B).

Proximity to the critical point

Finally, how the stochasticity of branching morphogenesis could lead to a stochastic transition to a fully annihilated state was as-

sessed systematically. Indeed, within themean-field theory, annihilation of the entire tree could not occur, as any non-vanishing value

of the branching rate were sufficient to yield a steady state non-zero density of active tips. However, fluctuations, when taken into

account through the full numerical simulations, were found to be able to destroy this active steady state, thus giving rise to a non-

zero probability for full tree annihilation. The frequency of termination was thus varied by performing a parameter sweep in the anni-

hilation radius Ra. (Although the branching probability rb could also have been used as a converse variable, this was computationally

more intensive as it required simulating many particles for the low branching rate limit.) The same parameter set as in the control kid-

ney simulations was used (i.e., non-repulsive), although three-dimensional isotropic simulations without a deterministic seed were

performed here in order not to confound the analysis. For obvious technical reasons, trees cannot be simulated for an infinite amount

of time, so that finite-size effects were expected, i.e., full annihilations which might occur later than the threshold simulation time

would be discarded. However, the frequency of such events became vanishingly small in time, and only mattered in the very close

vicinity to the critical point. The criteria chosen was that trees reaching 100; 000 particles were considered non-annihilated/survivors,

at least 1000 simulations per parameter value were run (see Figures S7E–S7G for representative examples), and tree survival prob-

ability was calculated as a function of the annihilation radius. Importantly, and in qualitative agreement with the literature (Cardy and

Täuber, 1996), it was found that above a threshold in the annihilation radius Ra, the tree survival probability vanished, while it contin-

uously increased below this threshold, indicative of a continuous phase transition (Figure 7F). Below a secondary lower threshold,

survival always occurred. Interestingly, as could be expected from a biological perspective to avoid tree extinction, both these

thresholds were found to be larger than the control value used to fit the in vivo kidney data (the same was true of mammary glands

and two-dimensional simulations), by ratios of 2 and 3, respectively (Figure 7F, dashed vertical line).
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Supplemental Figures

OriginOrigin

Figure S1. Whole-Gland Reconstructions Reveal the Dynamics of Fat Pad Invasion and Branching Morphogenesis, Related to Figure 1

(A) Whole-gland imaging (K14 staining in white) of fourth mammary glands of 3.5w, 5w and 8w old mice. Pubertal morphogenesis starts from a rudimentary tree

around 3.5w and is complete around 8w.

(B) Post-reconstruction outlines of the 5w old mammary glands seen in (A).

(C) Post-reconstruction outlines of the 8w old mammary gland seen in (A).

(D) Post-reconstruction outlines of another 8w old fourth mammary gland reveals the heterogeneity and stochasticity underlying mammary gland formation and

structure.

(E) Post-reconstruction outlines of a 5w old fifth mammary gland shows a similar structure and organization compared to fourth mammary glands. Gland origin

indicated in each panel by red arrow.

Scale bars: 5 mm.
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Figure S2. Branching and Annihilating Random Walks Robustly Reproduce the Experimental Phenomenology, Related to Figure 2

(A) Typical output of a numerical simulation of our model, using the same parameters used for the wild-type case of Figure 2, but in an unbound geometry. Active

tips are color-coded in red, while inactive ducts are in black.

(B) Definition of the tip termination probability q, and the converse probability to branch 1�q. In the following we present termination probabilities averaged for all

tips of a given generation number.

(C) Average tip termination probability from an average of 500 simulations in an unbound domain shown in A, as a function of the generation number. This

demonstrates a robust convergence toward a balance between tip termination and tip branching (green horizontal line).

(D–G) Sensitivity of the results of the model as a function of the annihilation radius Ra. We perform simulations with a smaller radius (Ra = 1.5, panel D) and a larger

radius (Ra = 3.75, panel E), and we compare in each case the termination probability (F) and subtree size distribution (G) to show that the results are only very

weakly dependent on Ra.

(H–K) Sensitivity of the results of the model as a function of the persistence angle d q. We perform simulations with an infinite persistence (d q = 0, panel H) and a

persistence halved fromwild-type (d q = 2d qre f , panel I), and we compare in each case the termination probability (J) and subtree size distribution (K) to show that

the results are only weakly dependent on d q .

(L–O) Numerical simulations for a probability annihilation (i.e., instead of deterministic as in thewild-type simulation, L), or for a constant angle upon branching (M).

We compare in each case the termination probability (N) and subtree size distribution (O). We find that the results of the tip termination probability are largely

unaffected in all conditions, showing a robust convergence toward 0.5 on the same timescales. Probabilistic annihilation however markedly changes the shape of

the subtree size distribution, as discussed in the STAR Methods.
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Figure S3. Alternative Models of Branching Morphogenesis Do Not Fit the Experimental Data, Related to Figure 2

(A–F) Typical output of numerical simulations of our model (A–C), and corresponding statistics (D–F), using the same parameters as used for the wild-type case of

Figure 2, but with a guiding gradient that orients tips toward the distal side with strengths of gx = 0.05 (A and blue curves), gx = 0.1 (B and orange curves) and gx =

0.2 (C and yellow curves). In each case, we compare the data (black) to the default model of Figure 2 (purple), and the predictions from the simulations with a

gradient, for the branch angle probability (D), cumulative subtree size distribution (E) and subtree persistence (F).

(G–K) Typical output of numerical simulations of our model (G andH), and corresponding statistics (I–K), using the same parameters used for the wild-type case of

Figure 2, but with tip-duct repulsion (repulsion radius ofRa = Lx/20 and a repulsion strength fr = 0.6) andmedium (G and orange curve) and large (H and blue curve)

side-branching (see STARMethods for details). In each case, we compare the data (black) to the default model of Figure 2 (purple), and the predictions from these

simulations for the cumulative subtree size distribution (J) and subtree persistence (K).

(L–P) Typical output of numerical simulations of our model (L–N), and corresponding statistics (O and P), using the same parameters used for thewild-type case of

Figure 2, but with various probabilities of side-branching: rs = 0.2 (L and blue curves), rs = 0.5 (M and orange curves) and rs = 0.75 (N and yellow curves), see STAR

Methods for details. In each case, we compare the data (black) to the default model of Figure 2 (purple), and the predictions from these simulations for the

cumulative subtree size distribution (O) and subtree persistence (P).

(Q and R) Typical output of numerical simulations of our model (Q), and corresponding statistics (R), using the same parameters used for the wild-type case of

Figure 2, but with self avoidance between tips and ducts (repulsion radius of Ra = Lx/60 and a repulsion strength fr = 0.6), and various probabilities of side-

branching (rs = 0.75, blue curve, rs = 0.9, [Q] and orange curves, rs = 1, yellow curves; see STARMethods for details). In each case, we compare the data (black) to

the default model of Figure 2 (purple), and the predictions from these simulations for the cumulative subtree size distribution (R).
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Figure S4. Numerical Simulations of Branching andAnnihilating RandomWalks AreCaptured by a Fisher-KPPMean-Field Theory, Related to

Figure 3

(A) Typical simulation output for branching and annihilating random walks with a regulation on the branching probability, and constant and uniform annihilation

probability. Contrary to the default case, although the model succeeds in reproducing the constant ductal density along the AP-axis, numerous cross-overs can

be seen in the simulation outputs.

(B) Typical simulation output for intrinsically balanced tip termination and branching, irrespective of local cues. This displays cross-overs and lack of space filling

properties.

(C) Typical simulation output for classical branching and annihilating random walks where tip annihilation only occurs in contact to another active tip. Active tips

are uniformly distributed along the gland, instead of sitting at the front of the invasion, and the ductal density displays a gradient, together with numerous cross-

overs between ducts.

(D) The key aspects of (C) are well-captured by amean field Fisher-KPP theory, for which we show a typical numerical integration output (rescaled branching rate

r = 1), for different time points (red, orange, green and blue represent successive times). The full lines represent the density of active tips, while the dashed lines

represent the density of inactive particles, i.e., ducts.

(E) Kymograph of the numerical integration of Figure 3B, showing the propagation of a solitary pulse of active tips, traveling at constant density (rescaled

branching rate r = 0.1). The dashed line represents the analytical prediction for a speed of V = 2r1/2, which fits very well the numerical simulation.

(F) Stationary shape of the KPP pulse in the same numerical simulation as E/, with the x axis rescaled around 0 (red). The dashed black lines represent of the

analytical prediction for the exponential decay length of the back and front of the front, fitting very well with the numerical simulations.

(G) Numerical integration of the Fisher-KPP equations, with the same parameters as Figure 3B, but making the approximation discussed in the STAR Methods

that i � a and raða+ iÞ � a. We observe very similar results, validating the approximation scheme, for different time points (red, orange, green and blue represent

successive times). The full lines represent the density of active tips, while the dashed lines represent the density of inactive particles, i.e., ducts.

(H) Stationary shape of the KPP pulse, comparing three conditions: numerical integration of the full KPP equations as in (D) (full red line, r = 0.1), approximation

discussed in (F) (dashed orange line, r = 0.1), and numerical integration of the full KPP equations for larger r = 1, where the approximation becomes invalid (thin

black line). For r = 0.1, one notices that the approximation matches very well the integration of the full equation. Increasing r = 1 produces sharper pulses as

expected, but still leads to the same phenomenology discussed in the r / 0 limit of a pulse which decays slower in the back that in the front.

(I) Experimental density of ducts (black) and proliferative tips (same as Figure 3D), overlaid with the fitted analytical prediction of an exponential decay at the front

for both tips and ducts (dashed line). Importantly, the back of the pulse was well-fitted by the theoretical prediction of a slope O2 � 1 (less steep, dashed line).

(J) Reconstruction of a 5w third mammary gland following an Edu pulse, showing a similar result as Figure 3C, with a pulse of tips at the invasion front and large

density fluctuations.

(K) Zoom on representative terminal end bud structures, i.e., active tips containing highly proliferative cells, from the boxes shown on I. Error bars represent mean

and s.e.m.

Scale bars: 5 mm (I) and 100m m (J). K14 in white, EdU in red.
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Figure S5. Density Fluctuations and Ordering in Branching and Annihilating Random Walks, Related to Figures 4 and 5

(A and B) Comparison between representative experimental tip configuration at the edge of the invasion front and numerical simulation reveals large tip density

fluctuations due to stochastic random exploration of space (arrowhead, [A], zoom from Figure 3C) or stochastic massive tip termination (arrow, [B], from the third

mammary gland).

(legend continued on next page)



(C) Theoretical particle number variation versus average in log-log plot, for increasing branching probability rb, showing giant number fluctuations. Increasing rb
(i.e., going further from the critical point) produces lower exponents a of giant number fluctuations. Thick and dashed black lines represent resp. power laws of

exponent 0.5 and 1. We show respectively rb = 0.05 (a = 0.74, yellow), rb = 0.85 (a = 0.69, green), rb = 0.1 (control value, a = 0.67, purple), rb = 0.12 (a = 0.66, blue)

and rb = 0.2 (a = 0.62, orange).

(D) Experimental particle number variation versus average in log-log plot, for each of the n = 14 mammary glands analyzed. Although some level of dispersion

exists, all glands are robustly showing giant number fluctuations. The thick black line represents a power 1/2, indicative of equilibrium, while the dashed black line

represents a power 1.

(E) Schematic of the repulsion implementation. Active tips sense neighbors over a radius of Rr around them, and in addition for their usual displacement of l in a

direction p, make a step of fr in the direction -pr (green arrow), pr being a unit vector which averages over all tip-neighbor vectors.

(F–J) Sensitivity of the results of the model as a function of the repulsion strength fr . We perform simulations with a small strength (green lines, fr = 0.2, F) for the

repulsion between tips and ducts only, as well as simulations with the same strength (blue lines, fr = 0.2, G), but where tips are also repulsed by the borders of the

fat pad (drawn in black). We compare in each case the termination probability (H), the distribution of branch angles (I), as well as the exponent of giant number

fluctuations (J, thick and dashed black lines represent resp. power laws of exponent 1/2 and 1). Increasing the repulsion strength enhances directionality and

decreases the spatial density fluctuations (as expected for such a repulsive mechanism). However, the convergence toward balance between termination and

branching probabilities is largely unaffected by local repulsion in two dimensions.

(K) Color-coded branch angle distribution in a fourth mammary gland at 8w (same of Figure 1A, see also Figure 4C).

(L) Simulations of bead experiments with various assumptions (left to right): control beads, beads provoking termination, beads promoting branching and beads

inhibiting termination.

(M) Additional typical example of a reconstructed thirdmammary gland in the presence of TGF-b1 soaked beads (blue spheres, same concentration as Figure 5A).

Active TEBs are marked by red arrowheads.

(N) Additional typical example of a reconstructed third mammary gland in the presence of control, PBS with 0.1% BSA soaked beads (blue spheres).

(O) Quantification of bead-duct cross-over in the presence of control versus TGF-b1 soaked beads, compared to its theoretical counterpart from (L).

(P) Quantification of average branchpoint to next branchpoint distance in the presence of control versus FGF10 soaked beads, in regions close versus far to the

beads, as well as far from TGF-b1 soaked beads. This displays a specific increase of branching rate close to the FGF10 beads. Error bars represent mean

and s.e.m.

Scale bars: 2 mm.
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Figure S6. Branching and Annihilating Random Walks in a 3D Geometry, Related to Figure 6

(A) Definition of the angles q and4 in spherical geometry, as well as the geometry of branching events. The two branches produced upon branchingmake an angle

of ai with the original branch, and are diametrically opposite to each other, while being free to choose the plane of bifurcation randomly.

(B) Schematics of the definition of long axis (z), medium axis (y) and short axis (x) to align experimental reconstructions of kidneys, as well as definition of the angle

q of a given branch in the kidney used in (E).

(C) Experimentally measured ratio between the long, medium and short axes of the kidney (n = 5 kidneys averaged from E16 to E19).

(D) Average branch length as a function of the branch generation number for E15 and E17 kidneys (n = 3 each).

(E) Average branch length as a function of the angle q for E15 and E17 kidneys (n = 3 each), showing only a weak dependency (branch generations > 10 included).

(F) Cumulative distribution of branch length (rescaled by its average) for E15 and E17 kidneys (n = 3 each, branch generations > 10 included), which is very well-

fitted by an exponential distribution with a refractory period (cut-off below which branching cannot occur).

(G) Correspondence between the embryonic time of segmented kidneys and the best-fit value for the simulated time step (from the total number of branches at

that given time step), used to fix the timing of the theoretical curves from Figures 7A, 7C, and 7D.

(H) Three-dimensional reconstructions of a wild-type E15 kidney, with branch generation number color-coded in shades of blue. We show successively only the

first 5 branching levels (left), the first 10 branching levels (middle), and the full kidney (right), to emphasize the larger number of branching levels along the long axis

z of the kidney.

(I) Sections of typical simulation outputs of full three-dimensional simulations of kidney, for fours conditions, from left to right: section from a simulation using the

default values used to fit wild-type kidneys (from Figure 7), i.e., with an annihilation radius of R’
a = 0.25, section from simulations of mutant reducing the anni-

hilation radius by half (R’
a = 0.125), section from simulations of mutants increasing the annihilation radius two-fold (R’

a = 0.5) and section from simulations adding

self-avoidance properties (strength fr = 0.33, R’
a = 0.5), showing a more ordered branch spatial distribution. In all cases, one observes the self-organization of a

noisy front of active tips at the edge of the kidney, which becomes wider with decreasing annihilation radii.

(J) Experimental versus theoretical average number of branches per generation as a function of time (E13 in purple, E15 in green, E17 in blue, and E19 in orange,

n = 3 kidneys each), for several variations of the experimental parameters. Top panel: Theoretical branch number distributions without any annihilation (Ra = 0),

showing that the variability in branch number per generation does not arise solely from a pure stochastic branching process. Middle-top panel: Theoretical branch

number distributions for a lower annihilation radius halved compared to control (R
0
a = 0.125), showing an underestimation of heterogeneity at E19. Middle-lower

panel: Theoretical branch number distributions for a higher annihilation radius doubled compared to control (R
0
a = 0.5), showing an overestimation of the het-

erogeneity at E19.

(K and L) Experimental (n = 3 kidneys for each time point) versus theoretical number of inactive particle (i.e., nephrons, measured via glomeruli numbers

experimentally) as a function of tip (active of inactive) number (black squares). We show on (K) the theoretical curves for decreasing annihilation radii: R
0
a = 0.5

(green), R
0
a = 0.33 (blue), R

0
a = 0.25 (default, purple), R

0
a = 0.15 (orange), R

0
a = 0.125 (yellow) and on (L) the theoretical curves for default parameter (R

0
a = 0.25,

purple) without self-avoidance, with avoidance, showing an underestimation of the nephron number (R
0
a = 0.25, fr = 0.33, green) and with avoidance together with

a larger self-annihilating radius (R
0
a = 0.5, fr = 0.33, blue). Error bars represent mean and s.e.m.

(M) Snapshot, reproduced from (Davies et al., 2014), of a culture experiment where two intact kidneys were grown in proximity (blue arrows).

(N) Simulation of (M) in the case of pure termination without repulsion.

(O) Simulation of (M) in the case of pure repulsion without termination. Scale bar: 100 mm.
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Figure S7. Branching and Annihilating Random Walks as a Generic Framework to Understand Pathologies and Other Branched Organs,

Related to Figures 6 and 7

(A and B) Simulations using control parameters, but in an anisotropic setting lead to a similar phenomenology of a self-organized pulse of active tips at the edge

(section of a simulated tree shown on [A]), although with decreased tree heterogeneity ([B], n = 3 kidneys for each time point).

(C) Section of a E17 murine kidney, displaying collecting epithelial ducts (green, stained for cytokeratin 8) and a nephrogenic zone positioned at the growing

periphery of the tissue: glomeruli (used as a proxy for maturing nephrons) stain with both the red (laminin, renal basement membrane) and blue (podocalyxin for

podocytes in the glomerulus) channels and appear pink. Bifurcating tips (white arrows) can also be observed at the tissue periphery.

(D) Theoretical number of inactive particle (i.e., nephrons, measured via glomeruli numbers experimentally) as a function of tip (active of inactive) number (data:

black squares), both for the control model described in themain text with time-invariant parameters (purple line), and for time-varying parameters (withR
0
a = 0.125

before E15 and R
0
a = 0.5 afterward), which an absence of power-law scaling (green curve).

(E) Typical output of a numerical simulation from the phase diagram of Figure 7F, for an annihilating radius Ra = 2.5, with systematic tree survival through an initial

excess of branching compared to termination.

(F and G) Two typical outputs of numerical simulations from the phase diagram of Figure 7F, for an annihilating radius Ra = 3.9, i.e., close to the critical point.

Simulated trees then stochastically self-annihilate at varying sizes, from rudimentary trees [F]) to complex structures (G).

(H and I) Two typical outputs of numerical simulations of a E15 kidney, using the default model parameter (H) and an averaged branch length halved (I), mirroring

Vitamin-A deficient kidneys.

(J) Experimental versus theoretical average number of branches per generation in E15 kidneys for wild-type (purple) and Vitamin-A deficient mice (green, data

from Sampogna et al., 2015), along side the theoretical predictions from the simulations shown in (H) and (I).

(K) Two examples of tree topology from the three-dimensional reconstruction of a subunit of human prostate, displaying heterogeneity and numerous early

termination events.

(L) Tip termination probability as a function of generation, for n = 5 human prostates, showing a rapid convergence toward a balance between tip termination and

tip branching (green horizontal line).

(M) Subtree (defined as starting at generation 6) heterogeneity, assessed via its cumulative size distribution.

(N) Numerical simulation of a four species Turing-Meinhart system (see STAR Methods for details and parameters). We represent a density plot of the con-

centration of the activator a, which localizes at the growing tip. High concentrations are color-coded in yellow and low concentration in blue. The system performs

branching and annihilating persistent random walks, and could therefore serve as a molecular basis for our model.

Error bars in (B) and (H) represent mean and s.e.m and in (I) a confidence interval of 1 s.d. In (A) and (E)–(I), active tips are red, inactive tips yellow, and ducts black.

Scale bars: 200 mm.
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